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Introduction

While this document contains no original notion nor new approach to the subject,
I think it can give the reader a good overview of how various the behaviours of
biological systems may be, and of how the mathematics of Dynamical Systems
can predict unusual phenomena. This dissertation is opened with a (very) short
introduction to the biological setting, so that the reader can make a sense of the
content which goes beyond the mathematics involved in the description, for the
sake of completeness and to (hopefully) rise their interest in the matter with a
simplified exposition by somebody who is not a biologist and tried to analyse a
biology book with the eyes of a mathematician-to-be.
In the second chapter we introduce the Hodgkin-Huxley and the FitzHugh-
Nagumo systems; if the former was one of the first attempts to mathematically
model how an action potential (i.e. the neuronal impulse, but see Chapter 1)
in neurons, in the derivation and the analysis of the latter we use one of the
two main recurrent ideas of this text: fast-slow systems. This is a very peculiar
kind of systems of ODEs where variables change at different rates but can be
distinguished in “fast”and “slow”variables: this structure will be used twice,
by FitzHugh to derive his model and by us to perform the analysis of canards,
based on a theorem by Fenichel. Canards are a special kind of solutions for the
system which are completely unexpected, the reader will see why in Chapter 2,
and fundamental to the study of the study we shall lead: we will not define the
meaning of the following words here, as they will be defined in the relevant parts
of the document, but the presence of canards implies the absence of a voltage
threshold for the generation of the action potential, and this is not what one
would expect to see as it appears to be the opposite of what can be seen in
experiments.
Already in this chapter we can see a simple example of bifurcation: given the
dimensionality of the problem we can apply phase-plane methods, in this case
the Poincaré-Bendixson theorem to prove the generation, while a parameter of
the system varies smoothly, of an attractive limit cycle from a stable equilibrium
which loses stability.
In Chapter 3 we will analyse the Morris-Lecar model: after performing a di-
mensional reduction (one can already find its motivations in the original paper)
applying a Theorem by Tikhonov, we will start showing, helping ourselves
with simulations in MATLAB, the incredible variety of phenomena which the
model can give rise to, with little variations of parameters which can be in fact
experimentally manipulated. The first study will involve just one bifurcation
parameters, but then we will always work with two bifurcation parameters simul-
taneously, describing a variety of qualitative behaviours, and their transitions,
of the solutions, sometimes with really bizarre conclusions.
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iv INTRODUCTION

After this short description of the material contained here, the reader will have
understood the reason of the title: fast-slow structures and bifurcations have
been used and investigated thoroughly in this document, providing at the very
least motivation to study mathematically these ideas, and more optimistically
an intuition of the power of such methods when it comes to deal with complex
problems and nonlinearity.

So far I have described what I wrote and why I wrote it, now I need to state how
I wrote it. This dissertation has been almost completely (apart from this intro-
duction and some minor changes through the text) written during my Erasmus+
mobility at the University of Warwick, Coventry, UK, under Professor Robert S.
MacKay, FRS FInstP FIMA, whom I wish to thank here for his constant help
and patience when I went to him full of doubts and required explanations, or
when I needed to discuss what to study next, or just wanted to talk a little bit.
I am very grateful for having the possibility of knowing and working with him.



Chapter 1

Biological overview

1.1 Anatomy of a neuron

The neuron is, as it is well known, one of the kind of cells which a brain is made
up of: neuronal cells fulfil a great variety of functions and their anatomic features
reflect their specific functions. Nevertheless, it is possible to recognise a general
scheme to which the anatomy of a neuron must obey. Generally speaking1, the
four constitutive parts of a neuron are the dendrites, the cell body (also called
soma or perikaryon), the axon and a synaptic termination.
Dendrites are extremities of the cell which collect information from other neurons:
they provide a large receiving area creating a ramified structure with receptors
at the end of each branch. The form of the dendritic tree can be used to infer
the role of the single neuron and the type of information it receives2. The shape
of the dendritic tree is maintained by both intercellular superficial interactions
and intracellular structural devices.
The perikaryon contains the cell nucleus and cytoplasmatic organelles, in par-
ticular levels of protein synthesis in neurons need to be kept high: this process
involves a quantity of steps which go from the transcription of the DNA into
mRNA to the actual synthesis. It is remarkable that the organisation of the
Rough Endoplasmatic Reticulum (RER), a cytoplasmatic organelle necessary
to the protein synthesis, is peculiar in neurons: stacks of RER are interposed
with arrays of free ribosomes, and the functional important of such a structure
is currently unknown.
The axon is a wire through which the information flows, from the perikaryon to
other neurons: this information is transmitted as an electrical stimulus, called
action potential. This is primarily generated at the axon hillock, the area of
connection between the axon and the perikaryon: the process of generation of
the action potential is the main topic of this dissertation, and will be examined
in greater detail in the following chapters.
Synapses are the places where two neurons connect and exchange information.
They are made up of three parts: a pre-synaptic element, a cleft and a post-

1What follows is referring to multipolar neurons, the most common kind of neuronal cell.
2As reported in [13], page 42, the width of the dendritic arbor can be used for example

to infer how large the pool of afferents is: a pyramidal neuron, an excitatory neuron whose
function is to make distant contacts, will have a wider dendritic tree than a neuron whose
afferents belong in a particular cortical layer.

1



2 CHAPTER 1. BIOLOGICAL OVERVIEW

synaptic element. Seen in cross-section, the first and the third part look like
two parallel segments, separated by the cleft, which is a very narrow strip of
empty space. The presynaptic element belongs in the neuron which transmits
the information, at the very end of its axon3; this area contains the synaptic
vesicles which, when stimulated by an action potential, release neurotransmit-
ters, biomolecules which spread across the cleft and reach the post-synaptic
element. The post-synaptic element belongs in a dendrite of a neuron and
receives the information which will be processed in the perikaryon, and in some
cases transmitted again through the axon.

1.2 The action potential

As mentioned in the previous section, the action potential is an electrical stimulus
which is used to transmit encoded information from one neuron to another. In
this section we shall describe the setting necessary for the generation of the
action potential, what kind of objects is involved and how. This will lead to the
next chapter, describing the Fitzhugh-Nagumo model.

1.2.1 Membrane potential

Membranes in neurons carry out the function of creating a potential difference
between the inside and the outside of the cell. This aim is achieved by regulating
the concentrations of several ions, among which we can mention Na+, Ca2+,
K+, Cl−, inside the neuron. The plasma membrane contains pores, called
ionic channels, which let specific ions pass: these therefore tend to reduce the
concentration gradient between the two sides of the membrane, and this results
in changes in the electric field. At some point the voltage is such that, because
of electrostatic forces and thermodynamics laws, the probabilities of one ion
getting in or out the cell are the same: we call this equilibrium potential. By
definition the equilibrium potential can be different for each kind of ion, and
the resting potential of a neuron, i.e. the voltage of a cell at rest, will be
a weighted average of the equilibrium potentials. When the cell is at resting
potential, ions flow spontaneously through the ionic channels according to their
concentration gradients, as the voltage is not an equilibrium for any ion, and the
cell can contrast this flux thanks to the work of membrane proteins, which
spend energy in order to move the ions against their concentration gradients,
and to keep the voltage stable at the resting potential.
Resting potentials are different depending on the different kind of neurons, but
they are always negative (i. e. positive ions tend to flow from the outside to the
inside), and on average around -60 mV.

1.2.2 Action potential

An action potential is a rapid increase followed by a decrease in the membrane
potential of the axon. The stimulus propagates then along the nerve, towards
the synaptic terminations, maintaining its shape.
In general the action potential is generated in the axon hillock (the juncture

3This statement might be overly simplified and imprecise, but it will suffice for the purposes
of this dissertation.
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Figure 1.1: The structure of a neuron in the Peripheral Nervous System, [13],
page 61.



4 CHAPTER 1. BIOLOGICAL OVERVIEW

between axon and perikaryon) by a sudden increase in the conductance of the
membrane to the Na+ ions. Meanwhile K+ ions are pushed out of the cell:
overall we have two currents, in the following INa, inwards, and IK , outwards.
There are some fundamental differences between the two: INa is faster in getting
triggered and is inactivated when the voltage reaches 0 mV, while IK is slower
in activating, but also is sustained while the membrane potential is positive.
A hypothesis about this process by Hodgkin and Huxley states that channels
for K+ ions are open in case of a non zero voltage, while the behaviour of
Na+ is more complex: they appear to have two processes triggered by voltage,
activation-deactivation and deactivation-inactivation. By “activation”we mean
the state in which Na+ channels do not prevent the flux of ions. The phase
of inactivation corresponds to a closed state of the Na+ channels when the
stimulus is still present. Deactivation is a closed state of the channels after
the stimulus has vanished.
We shall now propose the description by Hodgkin and Huxley for the steps
involved in an action potential, as reported in [13]. A first depolarisation
increases the number of the activated sodium channels, to create a flux of
positive sodium ions from the outside to the inside of the cell. When a certain
potential, called potential threshold4, is reached the flux of ions triggers
a positive feedback loop, depolarising consistently the membrane, taking the
potential towards the voltage for the equilibrium of the sodium ions (defined in
the previous section). With the increase of the quantity of sodium inside the
axon, however, the channels deactivate, and the flow is slowed. Meanwhile the
channels for the potassium ions open, and when the outflow of potassium ions
starts dominating the voltage reaches its positive peak (which can reach 40 mV)
and starts falling. As the interruption of IK is delayed, the membrane gets a
negative voltage which is in absolute value greater than the resting potential:
this phase is called after-hyperpolarisation, and it covers a period of time in
which the axon cannot generate or transport an action potential, and we speak
of the refractory period. Now channels for sodium ions are activated again
and channels for potassium are closed: the axon is ready for the generation of
another action potential.
As mentioned in the previous section, the action potential propagates along the
axon, both towards the synaptic terminations and the perikaryon: when it reaches
the synapses it causes the release of neurotransmitters, and the component which
passes through the body and gets to the dendrites acts as a signal for the
regulation of intracellular processes. It surely is important therefore to prevent
reverberations and oscillations of the action potential: this function is performed
by the refractory period above, as in that phase a greater depolarisation is
required for a new action potential, due to the inactivated sodium channels and
the steady outwards-bound potassium current.

4Usually this voltage is -55 mV.



Chapter 2

The Fitzhugh-Nagumo
model

In this chapter we shall first construct the Hodgkin-Huxley model for the
generation of the action potential, of which Fitzhugh-Nagumo is a mathematical
simplification, in order to get a better understanding of the biological meanings
of the mathematical results.

2.1 The Hodgkin-Huxley model

This model was first proposed in [5], and it was constructed thanks to the authors’
studies about the giant squid axon. In the following we shall denote, as before,
the sodium and the potassium currents as INa and IK respectively. We shall
consider a small leakage current, Il, whose presence is due to the movement
of other ions. Er will be the resting potential, ENa and EK the equilibrium
potentials for sodium and potassium respectively. gNa and gK will be their
respective conductances, and gl will stand for an average conductance to other
ions. To introduce the first equation we need to define the total current, I(t),
positive if directed inwards, the total ionic current Ii(t) = (INa+IK+Il)(t), again
positive if inwards, the displacement of the membrane potential from the resting
value V (t) = E − E(t) (with this definition V < 0 during the depolarisation
phase) and the capacity of the membrane per unit area CM : this last quantity
is assumed constant. Hodgkin and Huxley proposed the following equation:

I = CM V̇ + Ii (2.1)

where V̇ is the temporal derivative of V . The validity of this equation is justified
by previous studies of the authors. However, Hodgkin and Huxley recognise that
this law does not consider any dielectric loss of the membrane, but the error
introduced in this way does not appear to be very large.
Now we need to express the total current in terms of the voltage V (t). For
j ∈ {Na, l, K} we have

Ij = gj(E(t)− Ej) = gj(V (t)− Vj)

where V (t) = E(t)− Er and Vj = Ej − Er. The conductances are not constant,
and we need further equations to completely describe the system.

5



6 CHAPTER 2. THE FITZHUGH-NAGUMO MODEL

The potassium conductance By data from previous experiments, Hodgkin
and Huxley inferred that the best assumption, in terms of simplicity and effec-
tiveness, was that gK was proportional to the fourth power of a certain quantity,
that we shall call n ∈ [0, 1], which followed a first order ordinary differential
equation. It turned out that the following relations were a good description:

gK = ḡKn
4

ṅ = αn(1− n)− βnn (2.2)

where ḡK is constant, while αn and βn are functions of voltage, but not directly
of time. The dimensions are as follows:

[ḡK ] =
S

cm2

[αn] = [βn] = 103s−1

Hodgkin and Huxley suggest the following interpretation for the variable n:
they proposed that K+ ions could get through the membrane if and only if
four particles (of which we do not know anything, they are not even required
to be of the same kind) were found in a specific configuration. In this case n
would be a probability of finding one of the our particles in the proper place. In
particular it would seem that positions of the particles are mutually independent
(given the fourth power in the equation). Note that n might be some sort of
statistic approximation we can make and have no significance for small numbers
of particles. In this interpretation αn assume the role of the rate with which ions
flow from the outside to the inside and βn of the rate for the opposite movement.
By the discussion in the previous chapter one should expect αn to decrease and
βn to increase during the depolarisation of the membrane.

The sodium conductance Hodgkin and Huxley found two methods to prop-
erly describe the more complex behaviour of the sodium conductance: either
using a second-order ODE with one variable or using a first-order ODE with
two variables, each of which following a first-order ODE. The latter method was
preferred, as it had a simpler application to the experimental results1. The formal
laws they inferred are similar to the ones used for the case of the potassium:

gNa = m3hḡNa

ṁ = αm(1−m)− βmm (2.3)

ḣ = αh(1− h)− βhh (2.4)

The physical meaning can be given in an analogous way as well: we may assume
that the transfer of sodium from the outside to the inside of the cell is possible if
and only if there are three similar particles which are in a certain position, and
a fourth one is not blocking the channel. m in this interpretation would be the
probability of finding a particle that lets sodium flow in the correct position, and
h the probability of a blocking molecule not to be in the right site. Dimensions
and assumptions on m and h are the same made for n, and αj , βj for j ∈ {m,h}
are again the rates of transfer.

1See [5], page 512.
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The whole description Plugging the expressions for the conductances into
(2.1) we now have the complete Hodgkin-Huxley quantitative description of the
generation of the action potential:

I = CM V̇ + ḡKn
4(V − VK) +m3hḡNa(V − VNa) + gl(V − Vl)

ṅ = αn(1− n)− βnn
ṁ = αm(1−m)− βmm
ḣ = αh(1− h)− βhh

where we assumed the conductance for the leakage current to be constant. It is
evident that an analytic study of this system would be fairly complicated. In
the next section we shall introduce one of the main topics of this dissertation.

2.2 FitzHugh-Nagumo: the construction

This model (FN) was first proposed by R. Fitzhugh in [2]. It consists of a
simplification of the Hodgkin-Huxley model, meant to make the analysis of the
qualitative behaviour of solutions for Hodgkin-Huxley easier, without losing any
important dynamical behaviour regime but sacrificing adherence to biological
data. The ODEs describing the system are as follows:{

u̇ = c
(
w + u− u3

3 + z
)

ẇ = − (u−a+bw)
c

with the following conditions on the parameters:
1− 2b

3 < a < 1

0 < b < 1

b < c2

c > 0

where z is a function of time, corresponding to an electrical stimulus. The
reasons for the constraints will be later analysed.
What is immediately noticed is that in FN we have only two variables, while in
HH the number of degrees of freedom is four (recall that the variables describing
the system are V, m, n, h). To understand how the variables are eliminated we
need a quick analysis of the HH model, found in [4].

2.2.1 HH reduced systems

The key idea here is that we can split the four variables of the HH model into
two pairs: over a same (small enough) interval of time V and m can change
noticeably, whereas h and n can not. With this observation we are allowed to
conclude that, fixing h and n to a constant value, we can first study the dynamics
of the pair (V,m), to reinsert later h and n into the system. The following is
a short and heuristic description of the derivation of the FN model, rigorous
justification and precise numerical simulations can be found in [2].
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The (V,m) plane Set n and h constant and assume for simplicity I = 0. With
elementary calculations we can solve the differential equation involving m for
any fixed voltage V (recall that the parameters αm, βm are functions of the
voltage). The solution is the following:

m(t) = m∞(V )− (m∞(V )−m0) exp

(
− t

τm

)
(2.5)

where m∞(V ) = limt→∞m(t) = αm(V )
αm(V )+βm(V ) , m0 = m∞(0), τm = 1

(αm+βm)(V ) .

To perform numerical simulations it is therefore necessary to find the functions
describing αm, βm. Hodgkin and Huxley in [5] found the following expressions:

αm =
0.1(V + 25)

exp
(
V+25
10 − 1

) (2.6)

βm = 4 exp

(
V

18

)
(2.7)

where V is measured in mV.
We now want to plot in the phase plane (V,m) the trajectories of the reduced
system. To do so we need to choose the values for h and n: we shall fix them at
their resting values, which are h∞ and n∞. These are given by the expressions:

h∞(V ) =
αh(V )

αh(V ) + βh(V )

n∞(V ) =
αn(V )

αn(V ) + βn(V )

which were derived with a similar procedure as the one used above. The projection
on the (V,m) plane of the system is therefore determined by the following system
of ODEs:{

V̇ = −ḡKn4∞(V − VK)−m3h∞ḡNa(V − VNa)− gl(V − Vl)
ṁ = αm(1−m)− βmm

where we set CM = 1, as this is the experimental value found for it. Plotting
the nullclines {V̇ = 0} and {ṁ = 0} we see that we have three intersections
of the curves, two of which are close to the origin: see figures 2.1 (a) and (b).
The intersections with least and greatest m are stable equilibria, while the
intermediate one is a saddle point2: in particular there exists a stable separatrix
between the saddle point and the leftmost equilibrium. We can now project the
points in the (V,m) plane along straight lines of equation u = V − 36m, where
u is a real parameter. These lines are roughly perpendicular to the separatrix
of above, which acts as a boundary for the threshold responses: trajectories
nearby tend to the leftmost equilibrium, which can be considered a stable excited
state, and information about how the trajectories get closer to the separatrix
is not important to us, as we are most interested in how trajectories tend to
the excited state. By the projection we can use u as a new co-ordinate, losing
the component of the vector field which is orthogonal to the separatrix, and
maintaining information about the parallel component.

2See [4], pages 874-875
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Figure 2.1: The values for the parameters are from [5], pages 509-514-520 (curve
J). The black lines in the right figure show the direction of projection.

The (h, n) plane One can see plotting the curves n(t) and h(t) in a same
graph (as done in Figure 2.2) that the two curves −h and n have the same
shape: this implies that the new coordinate w = 0.5(n − h) is fit to describe
the dynamics as well. Notice that −h and n have the same shape if and only if
−h ≈ n+ k, for some k ∈ R constant. This holds if and only if d

dt (n+ h) ≈ 0.

With some computations we can write d
dt (h+ n) = −c(h+ n) + e(h− n), with

c =
αn + βn − αn

n − αh + βh + αh

h

2

e =
αn + βn − αn

n + αh − βh − αh

h

2

It turns out that during an action potential, after an initial short transient, c and
e tend to be constant, with c > 0, c ≈ −10e. Changing variables to y = h+ n,
x = h − n, we have a system where ẏ is largely determined by y itself,and
therefore y is attracted (after the transient) by the straight line passing through
the origin with slope ex

c . Since x given its definition can take values in [0, 1] only,
we can expect a variation in y = n+ h of no more than 1

10 . We can simulate the

system to find minimum and maximum of d
dt (n+ h) to get a better estimate. in

particular we get that the derivative must be less than or equal to 0.2292 s−1

and greater than or equal to -0.0034 s−1. Since the time required for an action
potential to take place is of about 25 × 10−3 s, n + h cannot vary more than
0.006, hence it is almost constant.

2.2.2 The (u,w) plane

Now we have the necessary information to compare the reduced (u,w) system
with a system described by the equations in (2.2). Figure 2.3 was obtained solving
with MATLAB Hodgkin-Huxley equations, and then plotting the quantities{

u = V − 36m

w = 0.5(n− h)

We can easily see that trajectories in the reduced plane (u,w) approximately
resemble the ones in Figure 2.4. A complete and detailed comparison of the two
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Figure 2.2: Evolution of h, n over time. V0 = −60 mV.

Figure 2.3: Trajectories for various initial voltages.

Figure 2.4: Trajectories described by FitzHugh’s equations.
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models can be found in [2], and it is not the aim of this dissertation. However,
in the words of Keener and Sneyd in [6],

“There is considerable value in studying systems of equations that are simpler
than the Hodgkin–Huxley equations but that retain many of their qualitative

features. This is the motivation for the FitzHugh–Nagumo equations and their
variants.”

2.3 Analysis of FitzHugh-Nagumo systems

2.3.1 The case z = 0

First we want to find the equilibria of the system, and then show their dynamical
properties. The two nullclines have equations:{

w = −u+ u3

3 u nullcline

w = a−u
b w nullcline

so the equilibrium points need to satisfy the algebraic equation

u3

3
+

(
1

b
− 1

)
u− a

b
= 0 (2.8)

We want to prove that this polynomial has only one real root, and that the

Figure 2.5: Nullclines in FN. z = 0, a = 0.7, b = 0.8, c = 3.

corresponding point in the state space is a Lyapunov-stable equilibrium. By the
theory of polynomials we know that if the discriminant of a polynomial function
of third degree is negative, such a function has only one real zero. In this case
the discriminant is

∆ =
−4 + 12b− 27a2b− 12b2 + 4b3

b3

As b > 0 to prove the thesis we can show that the expression −4 + 12b− 27a2b−
12b2 + 4b3 (∗) is strictly less then 0. Recall now that a > 1− 2b

3 : this inequality
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implies that (∗) is less than the following expression:

p(b) = −8b3 + 24b2 − 15b− 4

If we now show that p(b) < 0 for all b ∈]0, 1[ we are done. Observe that
p(0) = −4, and that the derivative p′(b) is greater than or equal to 0 if and only
if 0.3875 ≤ b ≤ 1.6125. In particular 0 and 1 are points of local maximum given
the constraints of the system, and p(1) = −3: thus p(b) < 0 in ]0, 1[, and we
have only one equilibrium.
Let us now consider the linearised system: the Jacobian matrix of the vector
field is

J =

(
c(1− u2) c
− 1
c − bc

)
We can infer the sign of the real part of the eigenvalues from the following
conditions: {

tr(J) ≥ 0

det(J) ≥ 0

By the constraints on the parameters we get that det(J) > 0⇔ u2 > 1− 1
b holds

for any admissible value of u, so the interesting condition is given by the first

inequality. tr(J) < 0 if and only if |u| >
√

1− b
c2 : in this case the two eigenvalues

need to have negative real part. In particular, to prove Lyapunov-stability it
suffices to show that if a point (u∗, w∗) is an equilibrium (and in particular u∗

satisfies equation 2.8) then the trace of the matrix J at that point is negative.
We prove the contrapositive: assume that the trace for some value u is strictly
positive, and show that u cannot satisfy equation 2.8. In order to do this, we
need to assume the constraints on the parameters a, b, c. Firstly, u cannot be

negative or zero, or it cannot satisfy the equation. If 0 < u ≤
√

1− b
c2 we get

the following inequalities:

u3

3
+

(
1

b
− 1

)
− a

b
≤
(

1− b

c2

)√
1− b

c2
· 1

3
+

(
1

b
− 1

)√
1− b

c2
− a

b
<

<

(
1− b

c2

)√
1− b

c2
· 1

3
+

(
1

b
− 1

)√
1− b

c2
− 1

b

(
1− 2b

3

)
=

=

√
1− b

c2

(
− b

3c2
+

1

b
− 2

3

)
− 1

b
+

2

3
<

<

√
1− b

c2

(
− �b

3�b
+

1

b
− 2

3

)
− 1

b
+

2

3
<

<

√
1− b

c2
− 1−

√
1− b

c2
+

2

3
<0

and the point cannot be an equilibrium. Therefore the only equilibrium needs
to be a sink.
We shall now prove that trajectories from any starting point x = (u,w) are
defined for any t ∈ R. We shall need the following Lemma, which we are not
going to prove:

Lemma 2.3.1. Let x be a point in the state plane. Suppose that the forward
orbit of x lies in a compact subset of the state plane. Then φt(x) is defined for



2.3. ANALYSIS OF FITZHUGH-NAGUMO SYSTEMS 13

any t ≥ 0, where φ is the flow associated to the system of ODEs describing the
system.

Assume, for contradiction, that J = [0, T [ is a maximal interval on which
a solution is defined, for some T ∈ R>0. By previous lemma it holds that
lim supt↗T ‖φt(x)‖ =∞, or otherwise the flow would be confined in a compact

set of R2, and T =∞. It must hold therefore that lim supt↗T
d
dt‖φt(x)‖2 ≥ 0.

However the set where d
dt‖φt(x)‖2 ≥ 0 can be determined the following way:

d

dt
‖φt(x)‖2 = 2φt(x) · φ̇t(x) = 2

(
u
w

)
·
(
u̇
ẇ

)
≥ 0

⇔ c

(
uw + u2 − u4

3

)
− uw − aw + bw2

c
≥ 0

and the set defined by this last inequality is compact: we have a plot of a
particular case obtained using Mathematica in Figure 2.6. It is closed as it is
the preimage of a closed set under a continuous function, and we can see that it
is bounded passing to polar coordinates on the (u,w) plane: defining{

u = r cos θ

w = r sin θ

the set can be written as {Φ(r, θ) ≥ 0}, where Φ : R2 → R,

Φ(r, θ) = c

(
r2 sin θ cos θ + r2 cos2 θ − r4 cos4 θ

3

)
− sin θ

r2 cos θ − ar + br2 sin θ

c

One can easily see that if θ 6∈
{
±π2
}

then the dominant term for large values of r

-20 -10 0 10 20

-20

-10

0

10

20

u

w

Figure 2.6: The region where d
dt‖φt(x)‖2 ≥ 0, for the values a = 0.7, b = 0.8, c =

3.

is −c r
4 cos4 θ

3

r→∞−−−→ −∞ < 0. If θ = π
2 , then Φ(r, π2 ) = ar

c −
br2

c

r→∞−−−→ −∞ < 0,

and if θ = −π2 we again have that Φ(r,−π2 ) = −arc −
br2

c

r→∞−−−→ −∞ < 0. In
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each of these cases by continuity we infer that Φ(r, θ) < 0 for large enough
values of r: therefore {Φ(r, θ) ≥ 0}, the set we are interested in, is bounded,
and therefore compact. But this leads to contradiction, as we assumed that
lim supt↗T ‖φt(x)‖ =∞.
The proof can be repeated for negative times: therefore trajectories are defined
for any real time t. We now show that trajectories are always contained in a
bounded set. We already know that they are defined for any t ∈ R, so if for a
particular initial value x (which we can assume to be 0, up to translation of the
system) the orbit is unbounded, there is a sequence of positive times tk →∞
such that ‖φtk(0)‖ → ∞. Consider again the bounded set where d

dt‖φt(x)‖ ≥ 0,
let R > 0 be such that B(0, R] (closed ball of radius R and centre 0) contains
this set. Let tj be an element of the sequence of times such that ‖φtj (0)‖ > R,
and t∗ < tj the last positive time before tj such that ‖φt∗(0)‖ = R. By the
Fundamental Theorem of Calculus we have that:

R < ‖φtj (0)‖ =

∫ tj

0

d

dt
‖φt(0)‖d t =

∫ t∗

0

d

dt
‖φt(0)‖d t+

∫ tj

t∗

d

dt
‖φt(0)‖d t < R

as d
dt‖φt(0)‖ < 0 for any ]t∗, tj ]. This is a contradiction, and the orbits are

therefore forced to be bounded.
We now consider horizontal displacements from the equilibrium P : P in our
model has the meaning of resting state of the neuron, studying what happens
to orbits after a horizontal displacement is meaningful as it corresponds to a
qualitative study of how the neuron reacts to an instantaneous change in the
voltage. Initial vertical displacements instead correspond to variations in the
gate variables h, n only, so they are not as easily physiologically justified. A key
observation here is that the absence of an upper bound for c forces the variables
u,w to change at different rates: setting ε = c−1 we can rewrite the system as
follows: {

εu̇ = w + u− u3

3

ẇ = −ε(u− a+ bw)

and, since ε can be much smaller than 1, u is the fast variable and w the slow
one. In particular, outside the nullclines, we have | u̇ẇ | ≈ ε

−2 = c2 ≫ 0. Thanks
to this discussion we can again consider w constant and describe the behaviour
of the system as it was done for HH (see section 2.2.1).
Consider a constant w: the straight line {(u,w)|u ∈ R} is then a phase line
for the fast subsystem of the variable u. For any constant w the u−dynamics
can be described studying the position of the phase line with respect to the
u−nullcline. Consider r, a straight horizontal line through the equilibrium P .
Above we proved that if uP is the u−coordinate of P , the condition

0 < uP ≤
√

1− b

c2

leads to contradiction for any b, c, so necessarily uP > 1, and r has three inter-
sections with the u−nullcline. Studying the equations it is immediate to see that

u̇(u,w) ≥ 0 if and only if w ≥ u3

3 − u, and thus the three intersections of the
u−nullcline are, from left to right, an attractive equilibrium (for u only, so we
call it excited point), a repelling equilibrium (again, for u only), and a stable
equilibrium (for the whole system). Given this characterisation of the intersec-
tions, we start by noticing that an initial point to the right of P or between P
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and the unstable intersection rapidly goes back to P . If the initial point lies
instead at the left of the repelling equilibrium for the fast subsystem (second
intersection), the trajectory moves quickly towards the attractive equilibrium to
the left. When the orbit reaches the excited point, the w−dynamics dominate,
and since ẇ(u,w) ≥ 0 if and only if w ≤ a−u

b , w increases slowly: the phase
line moves upwards, and the trajectory tends to stay at the excited point, i. e.
follows (approximately) the u−nullcline. At a certain moment the the phase
line ceases to have three different intersections with the u−nullcline: the two
leftmost ones collapse into a saddle point, and the orbit then moves rightwards,
getting farther from the u−nullcline, so that the w−dynamics get back to being
negligible. The movement becomes horizontal once again, and tends to the only
attractive equilibrium which is left on the phase line. When this is reached,
again the w-dynamics dominate, and this time the trajectory moves downwards,
until P is reached.
For initial displacements to the left of the leftmost intersection the description is
similar, as the trajectories tend to the excited point and then behave as shown
above.
Given this behaviour, one might argue that the intersection which gives rise to

Figure 2.7: Possible trajectories for horizontal displacements from the equilibrium,
[2], page 448. x = u, y = w.

the unstable equilibrium for the fast subsystem acts like a threshold: mathe-
matically, this means that, if ~γ = ±γû, there exists some time time t̂ such that
φt̂(P + ~γ) is discontinuous as a function of ~γ. In neuroscience, this behaviour is
said to be all-or-none. As FitzHugh remarks in [2], page 452, this is not the case
for his model: he argues that if initial point lay on the unstable equilibrium and
the computer calculations were errorless we would not have any discontinuity, as
the trajectory would follow the u-nullcline upwards and into the region which in
Figure 2.7 is labelled as No Man’s Land (consistently with the analysis of above),
hence we would have all the intermediate behaviours between all (trajectories
reaching the excited point) and none (trajectories going immediately back to
P ). FitzHugh calls this a Quasi-Threshold Phenomenon, as defined in [3],
page 265: the flow as a function of ~γ simply fails to be Lipschitz (or has a large
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Figure 2.8: Plot of u over time for evenly spaced points with same w−coordinate.

Lipschitz constant), but remains continuous, as we can see in Figure 2.8. We
shall write about this in the next paragraph.
Extension of the observations from above to the case of non-horizontal displace-
ments is immediate: given the initial point, if it does not lie on the u−nullcline,
we can repeat the study of the fast subsystem’s dynamics. If it lies on that
nullcline the w−dynamics dominate, and the point follows the u−nullcline if the
initial point is a stable equilibrium for the fast subsystem, or rapidly goes far
from the curve if it is unstable instead.
To conclude, it remains to explain the meaning of the labels in Figure 2.7: the
enhanced region is a set of points for which the necessary displacement to tend
to the excited point is less than the one required for P (indeed, they lie between
P and the middle intersection). The regenerative region is the one where the
trajectories tend to the excited points without needing any further stimulus. As
described above, the active phase takes place when the orbit follows closely the
u−nullcline. The absolutely refractory region contains the points above the left
local maximum of the u−nullcline: the phase line does not contain any excited
point, so going back to the active phase is clearly impossible with a horizontal
displacement. The relatively refractory and the depressed regions contain the
points for which getting back to the active state is possible, but the necessary
displacement is greater than the one needed to activate P .

FitzHugh’s canards

In this paragraph we want to apply the theory developed in Chapter 3 of [8]. To
proceed, consider a rescaling of time t = ετ , which applied to the system gives
the equivalent description:{

d
dτ u = w − u3

3 + u
d
dτw = −ε2[u− a+ bw]
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and by arbitrariness of the choice of ε replace ε2 with ε (notice that now the
condition on b becomes b < min{1, ε−1}), and for simplicity relabel τ with t.
The ODE we obtain this way is the following:{

u̇ = w − u3

3 + u

ẇ = −ε[u− a+ bw]
(2.9)

We can now give definitions which will be useful in the following discussion.

Definition 2.3.1 (Fast-slow systems). An (m, n)-fast-slow system is an ODE
in one of the two forms: {

εẋ = f(x, y, ε)

ẏ = g(x, y, ε)
(2.10)

{
ẋ = f(x, y, ε)

ẏ = εg(x, y, ε)
(2.11)

We say that the first ODE is written in the slow time-scale, and that the second
one is written in the fast time-scale. Notice that this convention makes sense as
one can pass from one expression to the other via a reparametrisation of time.

Comparing (2.9) and (2.11) one immediately sees that:

f(u,w, ε) = w − u3

3
+ u (2.12)

g(u,w, ε) = −(u− a+ bw) (2.13)

Definition 2.3.2 (Critical set). Consider the system in (2.11), and define its
critical set as follows:

C0 = {(x, y) ∈ Rm+n|f(x, y, 0) = 0}

If C0 is a submanifold of Rm+n, C0 will be called “critical manifold”.

In other words, the critical set is the subset of the phase space where the
dynamics are completely determined by the system:{

0 = f(x, y, 0)

ẏ = g(x, y, 0)
(2.14)

whose flow is called “slow flow”. Applying definition (2.3.2) to system (2.9) we
see that C0 in our case is nothing but the u−nullcline.

Definition 2.3.3 (Normally hyperbolic set). A set S ⊂ C0 is said to be normally
hyperbolic if all the eigenvalues of ∇xf(p, 0) have nonzero real part for all p ∈ S.
∇xf here is the Jacobian matrix of f with respect to the fast variables. If all
the eigenvalues have positive real part, S is sad to be repelling, if they have
all negative real part S is attractive. If S is normally hyperbolic but neither
attractive nor repelling S is said to be of saddle type.

We shall often require compactness of S.

Proposition 2.3.2. S ⊆ C0 is normally hyperbolic if and only if ∀p = (x∗, y∗) ∈
S, x∗ is a hyperbolic equilibrium point for the system ẋ = f(x, y∗, 0).
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Proof. Let p ∈ S. Then f(p, 0) = 0, so x∗ is an equilibrium for ẋ = f(x, y∗, 0).
The condition on the Jacobian matrix gives the hyperbolicity. For the other
implication, let x∗ be a hyperbolic equilibrium for ẋ = f(x, y∗, 0): then f(p, 0) =
0, so p ∈ S, and again the condition on the Jacobian is satisfied by hyperbolicity.

Definition 2.3.4 (Hausdorff distance). Let K(Rn) be the set of the compact
subsets of Rn with the standard topology, ‖·‖ be the Euclidean norm. Define
the Hausdorff distance on K(Rn): for every V,W ∈ K(Rn)

dH(V,W ) = max

{
sup
v∈V

inf
w∈W
‖v − w‖, sup

w∈W
inf
v∈V
‖v − w‖

}
Remark. The Hausdorff distance measures “how much two sets overlap”and
“are similar”. The compactness is required for dH to be well defined (i. e. not
infinity) and a metric (immediate to see that otherwise the distance between a
set and its closure is 0).

In the statement of the following theorem, the slow manifold is defined. We
will need this notion to proceed with our study of the canards.

Theorem 2.3.3 (Fenichel 1979). Let S0 be a compact normally hyperbolic
submanifold (possibly with boundary) of C0, f, g ∈ Cr. For any ε > 0 small
enough the following hold:

i) There exists a manifold Sε diffeomorphic to S0. Sε is locally invariant:
for any p ∈ Sε there exists an interval I =]t1, t2[ so that φt(p) ∈ Sε for all
t ∈ I.

ii) dH(S, Sε) = O(ε) as ε→ 0.

iii) The flow on Sε converges to the slow flow as ε→ 0.

iv) Sε is Cr-smooth.

v) Sε is still normally hyperbolic, and the stability characteristics are the same
as for S.

vi) Sε is usually not unique.

Proof. Omitted, see [1].

Despite point iv) we shall say “the slow manifold”to indicate any of the
possible slow manifolds.
Reduce now to the case of system (2.9). As above said C0 is the u−nullcline, and
since ∇uf(u,w, 0) = 1− u2, we infer that all points with u 6= ±1 are hyperbolic,
therefore any compact submanifold in contained in the middle branch is normally
hyperbolic and repelling, and any compact submanifold of the left or right branch
of C0 is normally hyperbolic and attracting.

Definition 2.3.5 (Canard). A solution is called a canard if it stays at a distance
O(ε) from the repelling branch of a slow manifold for a time O(1) in the slow
time-scale τ = tε.
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Now apply Theorem 2.3.3 to 2.9: consider a compact normally hyperbolic
submanifold of the middle branch of C0, let it be S, and assume it disjoint from
the w−nullcline. By these hypotheses, S has a boundary given by two points P0,
P1, both in the middle branch of the nullcline. We want to show that for ε small
enough no slow manifold can be fully contained in the area of plane above the
u-nullcline, and to do so we use points i) and ii) of Fenichel’s Theorem. First
observation: by point i) any slow manifold is a compact curve which is locally
invariant, and this means that trajectories can get in and out this curve only
through its boundary. This condition forces the slow curve “to have the same
shape as the dynamics”. Let γ(t) = (u(t), w(t)) be a generic solution of the
system, for any initial value: its temporal derivative is γ̇ = (u̇(u,w), ẇ(u,w)), and
in particular in the region above S, between the u−nullcline and the w−nullcline,
both components of the derivative are positive, in the region below S one has
u̇ < 0, ẇ > 0 instead. We want to show that for ε small enough the slow
manifolds need to “follow”S, generating contradiction if the slow curve is fully
contained in the region above S, and to do so we use point ii). Let Γ be the
w−nullcline (the straight line) and

d(A,B) = inf {‖a− b‖ |a ∈ A, b ∈ B}

for two sets A and B. Consider now

λ = min{‖(P0 − P1)u‖, ‖(P0 − P1)w‖, d(S,Γ)}

Since S is compact and Γ is closed we have that d(S,Γ) > 0. By point ii) there
exists some positive constant k ∈ R so that if ε→ 0 then dH(S, Sε) < kε: choose
then an ε that gives us kε < λ

3 . By definition of Hausdorff distance there exist
points Q0 and Q1 so that ‖P0 − Q0‖ < kε, ‖P1 − Q1‖ < kε, and assume by
contradiction that both the points lie above C0. By local invariance they are
connected by the flow, and therefore by definition of Hausdorff distance the
branch of curve in between is fully contained in the region of plane between C0

and Γ: for contradiction, assume there exists some Q̄ beyond Γ. By continuity
of the flow there needs to be some {Q′} ⊂ Sε ∩Γ, and this is a contradiction: by
definition of Hausdorff distance d(Q′, S) < d(S,Γ) (where the point-set distance
is the infimum of the distances of the points of the set from the specified point)
because Q′ ∈ Sε, and d(Q′, S) ≥ d(S,Γ) because Q′ ∈ Γ. Since we did not
specify the relative positions of P0 and P1 we can now assume that there exists
some t > 0 such that φt(Q0) = Q1. Since φt(Q0) = Q1 we need to have
Q0,u < Q1,u, Q0,w < Q1,w by the Fundamental Theorem of Calculus (the curve
is fully contained in the region where both temporal derivatives are positive).
We now have two possible alternatives for the relative positions of P0 and P1,
both leading to contradiction: P0,u < P1,u and P0,w > P1,w, or P0,u > P1,u and
P0,w < P1,w. Let us consider the first option: by ‖P0 −Q0‖ < λ

3 we have that

Q0,w ≥ P0,w − λ
3 and similarly Q1,w ≤ P1,w + λ

3 . From these inequalities we get:

Q0,w −Q1,w ≥ P0,w −
λ

3
− P1,w −

λ

3
≥ λ− 2

λ

3
=
λ

3
> 0 ⇒ Q0,w > Q1,w

which is a contradiction. In the second case we can proceed in a similar way to
get to an analogous contradiction, so the slow curve cannot be fully contained in
the region above C0 for an ε small enough, and the value of ε depends on the
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chosen submanifold.
The given argument is enough to prove the existence of canards: choose a
compact normally hyperbolic submanifold of C0 disjoint from Γ, and again call
it S, and fix the small ε used in the proof above. The associated slow manifold
Sε then either is contained in the region below C0 or crosses the u−nullcline. If
Sε crosses C0 it is then forced to go right by local invariance, and it cannot cross
C0 again. Let w0 be the minimum w−coordinate of all the points in Sε in the
region below C0, and w1 the maximum. By Fundamental Theorem of Calculus
we see that the projection Sε → R, (u,w) 7→ w is injective, and hence we can
compute the necessary time to go through the curve from w0 to w1 with the
following integral:

T =

∫ w1

w0,Sε

dw

|ẇ(u(w), w)|
Write the system in the slow time-scale, and observe that by equation (2.9) we
have that 1

|ẇ| is continuous in a neighbourhood of Sε. Applying Weierstrass

Theorem on a compact contained in such a neighbourhood we have:

M(ε)(w1 − w0) ≥ T =

∫ w1

w0,Sε

dw

|u(w)− a+ bw|
≥ m(ε)(w1 − w0)

where M(ε) and m(ε) are respectively global maximum and minimum of 1
|ẇ| in

the compact neighbourhood. If now M and m are respectively maximum and

minimum of |ẇ|−1 on S, since dH(Sε, S)
ε→0−→ 0 we have M(ε)

ε→0−→M , m(ε)
ε→0−→ m

by continuity, and this is enough to prove that T = O(1). Trajectories following
the slow manifolds of the repelling branch of C0 are therefore canards. By the
geometrical features we proved above we infer that they cannot lie completely to
the right of S, and this confirms FitzHugh’s observations of trajectories following
the repelling branch of C0 and then bend suddenly to the left.

2.3.2 The perturbed system

We now remove the hypothesis z = 0. To start, we need to compute again
number and dynamical features of the equilibria. By hypothesis z is independent
to u, so the study of the number of the real solutions of the algebraic equation

u3

3
+

(
1

b
− 1

)
u− a

b
− z = 0

which are the u−coordinates of the equilibria, reduces to the study of the

injectivity and surjectivity of the function h(u) = u3

3 +
(
1
b − 1

)
u. We can

immediately see that h′(u) > 0 for all u, therefore the function in injective. h is
a cubic polynomial, so limu→±∞ h(u) = ±∞, and by continuity (intermediate
value theorem) h is surjective. By bijectivity of h the algebraic equation, for
any fixed z, has only one real solution, and the system has still precisely one
equilibrium. We want to repeat the procedure we followed when studying the
dynamics near the equilibrium in the resting system: the Jacobian matrix is still
the same, hence we have the same conditions on the u−coordinates, but the
algebraic condition for the equilibrium is different. Consider again the conditions:{

tr(J) ≥ 0

det(A) ≥ 0
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The second one holds trivially. Again, tr(J) ≥ 0⇔ |u| ≤
√

1− b
c2 and if z ≥ 0

we can use again the estimates used in the case z = 0 to conclude the stability of
the equilibrium. For z < 0 those estimates fail. Geometrically, a change in the
parameter z moves up and down the u−nullcline, which can be divided into three
regions, according to the sign of its u−derivative. As this nullcline is described

by the equation w = u3

3 − u − z, its u-derivative is positive for u outside the
interval [−1, 1], and less than or equal to 0 inside. The upwards or downwards
shift of the nullcline also shifts the point of equilibrium from a branch of the
u−nullcline to another, and this change has consequences on the stability of
the equilibrium: observe that in particular if the u−derivative of the u-nullcline
is positive, then the trace of the Jacobian needs to be negative (it suffices to
compare the inequalities) and the equilibrium is stable. Now, notice that there
exists at least one value of z that causes the equilibrium to be unstable: set
z = −ab and observe that given the geometrical interpretation it is obvious that
the intersection of the nullclines has now u−coordinate 0. The equilibrium is
in this case a source as trace and determinant are both strictly positive. The
operations which are used in finding the root of the third degree polynomial
are continuous, so the function z 7→ uz, where uz is the u−coordinate of the
equilibrium, is continuous; by the condition on tr(J) we infer that if z takes
value in a neighbourhood of −ab then the equilibrium is unstable.
We can apply now Poincaré-Bendixson Theorem, but before the statement we
need to introduce the proper terminology and notation.

Definition 2.3.6 (α, ω−limits). Given a system described by the differential
equation ẋ = f(x), f : X → X and a point x0 ∈ X, we define the ω-limits of
x0 as the points y ∈ X such that there exists a monotone increasing sequence

(tk) ⊂ R satisfying φtk(x0)
k→∞−−−−→ y. Similarly we can define the α−limits for x0:

they are the points y ∈ X such that there exists a monotone decreasing sequence

satisfying φtk
k→−∞−−−−−→ y.

Definition 2.3.7 (α, ω-limit sets). Let us consider the system ẋ = f(x),
f : X → X, x0 ∈ X. We can define the ω-limit set of x0 as follows:

ω(x) = { y ∈ X | y is an ω − limit of x0 }

and similarly the α-limit set:

α(x) = { y ∈ X | y is an α− limit of x0 }

We can now state the theorem.

Theorem 2.3.4 (Poincaré-Bendixson). Let us consider the system ẋ = f(x),
X = R2, f ∈ C1(X) with associated flow φ. If φt(x) ⊂ K ⊂ X ∀t ≥ 0, K
compact, then either one of the following holds:

(a) ω(x) contains a fixed point;

(b) ω(x) contains a periodic orbit.

A periodic orbit which is an ω-limit set for some point in the state plane
is said to be a limit cycle. If we prove that each trajectory is bounded, by
Poincaré-Bendixson Theorem, using the fact that the only equilibrium is a source,
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we infer the existence of a limit cycle. We can use again the same estimate
we made above (after Lemma 2.3.1): repeating the calculations we notice that
the presence of z adds a term of first degree in r, which is therefore negligible
and the same conclusions hold. This is enough to infer the existence of this
curve, and the fact that any trajectory with any starting point (apart from
the equilibrium) tends to a limit cycle. If we now plot the projection into
the u−axis of a trajectory over time for this system we get a train of infinite
spikes, and this train cannot be finite given the existence of a limit cycle. In

(a) (b)

Figure 2.9: a = 0.7, b = 0.8, c = 3, z = −ab , and the unstable equilibrium is at
(0, 78 ).

Figure 2.9 we can see both the train of spikes and the limit cycle. We want now
to perform a study similar to the one lead in the previous section about the
trajectories of the system. In the interpretation we have given to the variable u,
as already mentioned, a horizontal displacement corresponds to a shock given
by an instantaneous change of z: according to the geometric role played by
the variable, a decrease (resp. increase) moves upwards (resp. downwards) the
u−nullcline in an instant, and the point moves leftwards (resp. rightwards), then
the phase plane goes back to the resting state and we have the displacement. Let
us consider the interesting case where the equilibrium of the system is unstable,
and we have a limit cycle (the study in the case of a stable equilibrium is not
substantially different from what has already been done). Let P be, once again,
the equilibrium: necessarily it lies on the middle branch of the u-nullcline, and
the phase line has three intersections with the u−nullcline. The leftmost and
the rightmost ones are two excited points (partial equilibria), the middle one
is P , the source of the whole system. If our starting point is to the right of P
it is attracted towards the right excited point, and then the w-dynamics force
the trajectory to go downwards, until the two rightmost intersections of the
phase line with the u−nullcline collapse. At this point, the trajectory needs to
head towards the intersection on the left branch, which is attractive. Once it is
reached, the w−dynamics force it to go upwards following the u−nullcline, until
the two left intersections collapse, when the u−dynamics become predominant
again and tend to the excited point on the right. Now the system will follow
once again the right branch of the u−nullcline, and therefore the limit cycle is
generated.
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Figure 2.10: Trajectories for the same initial value but different values of z.

The case of displacements to the left is very similar, and the conclusions (tra-
jectories following the nullcline and travelling horizontally from one branch to
another, generating the limit cycle) identical.
Let us notice an apparent contradiction: for P to be unstable it is necessary
that uP lay in an interval strictly contained in [−1, 1], so it needs to lie in the
middle branch of the u−nullcline, but this condition is not a characterisation of
the instability. In our discussion although P is always an unstable equilibrium
for the fast subsystem, and uP ∈ [−1, 1] is a characterisation of the instability
in this case. We now need to see that the dynamics of the fast subsystem
are representative of the dynamics of the whole system if and only if ε in the
definition is sufficiently small, and in particular for ε = 0 we are considering the
fast subsystem only, so tautologically its dynamics are all the dynamics. The
requirement on ε in our case is strictly connected to the region allowed for an
unstable equilibrium: recall that for the equilibrium P to be unstable we need
|uP | <

√
1− bε2, so asymptotically the fact that P lies in the middle branch

of the nullcline becomes a characterisation of the instability, and we solve the
apparent contradiction. To appreciate how the analysis fails in case of a small c
(large ε), look at Figure 2.11.
A stimulus lasting in time does not require a different description: as FitzHugh
explains in [2] at page 454, the only difference is the fact for times long enough
that the consequent movement from the equilibrium might have a vertical com-
ponent, and the argument is the same as above. As before, assume the starting
point at the equilibrium P , and firstly assume P to be stable on the right branch
of the u−nullcline. If the sustained stimulus is positive, the u−nullcline moves
downwards, and the new equilibrium is still attractive, so the point (provided
that the stimulus is kept long enough) reaches it. When the current (z) goes
back to its previous value, on the phase line only the left excited point is left,
so the trajectory reaches it and then completes the impulse, going back to P :
we speak of cathodal excitation. If P lies on the left branch instead, and
apply the positive stimulus, the behaviour is symmetric and the trajectory goes
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(a) c = 3 (b) c = 1

Figure 2.11: a = 0.7, b = 0.8, z = − 7
8 . The nullclines are present in both plots,

and in b) it is evident that trajectories do not follow the u−nullcline at all.

rightwards, and if it goes far enough beyond the threshold, once recovered the
resting value of z, we have an impulse. If P lies on the right branch again but
the impulse is negative, the u−nullcline moves upwards, and similarly the point
can travel beyond the threshold to generate a whole impulse. If P lies on the
left branch and we apply a negative stimulus the behaviour is symmetrical to
the first case: the new equilibrium is reached, then the point travels towards
the right branch, the impulse follows. Now let P be unstable on the middle
branch. For small variations of z we still have an attractive limit cycle, and
the trajectory follows this. Once the resting value of z is established again, the
trajectory tends to the original limit cycle.

2.4 Generalisations of FitzHugh-Nagumo

The form for the FN equations we adopted through our discussion is only one of
the many available alternatives: in [6] for example FitzHugh-Nagumo systems
are defined as obeying the following ODE:{

εv̇ = f(v, w)

ẇ = g(v, w)

and the only requirement is on f : it needs to have a cubic shape, i.e. “for a
finite range of values of w there are three solutions v = v(w) of the equation
f(v, w) = 0. These we denote by v = V−(w), v = V0(w), and v = V+(w), and,
where comparison is possible (since these functions need not all exist for the
same range of w), V−(w) ≤ V0(w) ≤ V+(w)”. Always in [6], at least three
adaptations for the equations are mentioned, and in these the function describing
the temporal derivative of the fast variable is piecewise continuous: among these
we can find the MacKean model, which given its simplicity allows for explicit
solutions, and the Pushchino model, used to describe the ventricular action
potential. Nagumo instead, in [11], added a term of dissipation to FitzHugh’s
equations to describe the propagation of the signal along the axon, obtaining
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the PDE which is sometimes called itself FitzHugh-Nagumo equation:{
h∂

2u
∂s2 = c−1 ∂u∂t − w −

(
u− u3

3

)
c∂w∂t + bw = a− u

where s denotes the distance along the axon and h is a constant derived from an
electronic simulation of FitzHugh’s equation, proposed in the same paper. By
these contributes Nagumo attached his name to FitzHugh’s model.
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Chapter 3

The Morris-Lecar Model

In this chapter we are going to introduce and analyse the Morris-Lecar model,
first proposed in [10]. Previous studies performed on the barnacle giant muscle
fibre had shown that it incorporates a simple system of two conductances, and
the ions involved were Ca++ and K+, but in opposition to the case studied
by Hodgkin and Huxley in [5] neither conductance shows fast inactivation.
Although in physiological conditions this does not allow for a wide range of
allowed behaviours for the voltage, in experimental conditions (after injection
of EGTA, a calcium chelating agent) it does not make an obstacle to observing
qualitatively different oscillations in the voltage. The questions Morris and Lecar
want to answer in [10] are if the non inactivation of the conductances is enough
to produce this variety of behaviours, and if neglecting further conditions (which
naturally occur) is acceptable and does not make the model inaccurate. The
results show that the answer to both queries is positive.

3.1 The original system and a fast-slow reduc-
tion

In this section we are going to present the original Morris-Lecar system and
then perform a fast-slow reduction using a theorem by Tikhonov: the aim is to
get an equivalent expression (from a qualitative point of view) for the system
which enables us to apply methods and theorems used on state planes. The
ODE proposed in [10] is the following:

I = CV̇ + gL(V − VL) + gCaM(V − VCa) + gKN(V − VK)

Ṁ = λM(V )[M∞(V )−M ]

Ṅ = λN(V )[N∞(V )−N ]

where I is the applied current, V is the voltage, M and N play a role analogue
to m and n in the Hodgkin-Huxley model, representing the fraction of open
Ca++ and K+ channels, and take values in [0, 1]. The gj are the conductances
associated to leak (j = L), calcium (j = Ca) or potassium (j = K), and are
assumed to be independent functions of voltage. Vj is the equilibrium potential,
for j ∈ {L,K,Ca}. λM (V ) (resp. λN (V )) is the rate of opening of the Ca++

(resp. K+) channels. M∞(V ), N∞(V ) are the fractions of Ca++ and K+ channels

27
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open at steady state. The last four quantities are described by the following
equations:

λM (V ) = λ̄M cosh
V − V1

2V2
(3.1)

λN (V ) = λ̄N cosh
V − V3

2V4
(3.2)

M∞(V ) =
1

2

(
1 + tanh

V − V1
V2

)
(3.3)

N∞(V ) =
1

2

(
1 + tanh

V − V3
V4

)
(3.4)

where λ̄M and λ̄N are the maximum rate constants for the opening of the
Ca++ and K+ channels, V1, V2, V3, V4 are parameters (whose values are to be
determined experimentally).
The system we are going to analyse is actually a 2-dimensional reduction of the
original model: we want to apply a theorem by Tikhonov1.

Theorem 3.1.1 (Tikhonov). Consider the dynamical systems:{
u̇i = fi(t, ui, vj) i = 1, . . . , p

εj v̇j = Fj(t, ui, vj) j = 1, . . . ,m

for (ui, vj) ∈ D ×G ⊆ Rp × Rm,and assume

• ui(t0) = ui0, vj(t0) = vj0

• the solution exists and is unique for the reduced system{
u̇i = fi(t, ui, vj) i = 1, . . . , p

0 = Fj(t, ui, vj) j = 1, . . . ,m

• εj(ε0) ≤ ε0 for some parameter ε0 > 0, and limε0→0 εj(ε0) = 0

• εj may be functions of other variables.

Now, if there exist functions ψj defined locally so that Fj(t, ui, ψj(t, ui)) = 0 for
each j, and a positive real number r0 such that

F (t, ui, vj) :=

m∑
j=1

[vj − ψj(t, ui)]Fj(t, ui, vj) < 0

if

0 <

√√√√ m∑
j=1

[vj − ψj(t, ui)]2 < r0

we say that the root of the system is stable. Define the region of influence of
the stable root to be the set of the initial values (t0, ui0, vj0) such that for all the
vj between vj0 and ψ(t0, ui0) it holds that sgnF (t0, ui0, vj) = sgnF (t0, ui0, vj0).

1We use the formulation contained in [12].
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Then for any initial point (t0, ui0, vj0) in the area of influence of the stable root
vj = ψj(t, ui), as ε0 → 0 we have {(t0, ui(t, ε0), vj(t, ε0))} → {t, ūi(t), v̄j(t)},
which is the solution of the degenerate system

d
dt ūi = fi(t, ūi, ψj(t, ūi)) i = 1, . . . , p

v̄j = ψj(t, ūi(t)) j = 1, . . . ,m

ūi(t0) = ui0

uniformly for t ≥ t1 > t0

Our aim is to approximate the solutions for the (V,M,N) system with
solutions of the (V,N) reduced system, as these will retain the qualitative
features of the trajectories of the complete system by Tikhonov’s Theorem: the
trajectories of the reduced system in fact tend to the ones of the whole system for
arbitrarily large times. Morris and Lecar had already mentioned this possibility
on page 201 of [10], stating that the the “Ca++ system is assumed to be so
much faster than the K+ system that gCa is instantaneously in steady state at
all times [i.e., M = M∞(V )]”. Set ε = λ−1M : then if ε0 = λ̄−1M we have that

ε(ε0) = λ̄−1M

(
cosh

V − V1
2V2

)−1
≤ λ̄−1m = ε0

lim
ε0→0

ε = lim
ε0→0

ε0

(
cosh

V − V1
2V2

)−1
= 0 ∀V

The solution locally exists and is unique for the reduced system as well, since all
the functions are locally Lipschitz and not dependent on the time. We can find
the function ψ manipulating algebraically the equation involving Ṁ , getting:

M(V,N, t) = ψ(V,N, t) = M∞(V ) =
1

2

(
1 + tanh

V − V1
V2

)
and now the function F is

F (t, V,N,M) = −λM (V )(M −M∞(V ))2 < 0

for r0 =∞, as λM (V ) > 0, (M −M∞(V ))2 ≥ 0 always. In particular sgn(F ) =
−1 on the whole of R4 (we consider time as a coordinate following the statement
of the theorem), and this is enough to apply Tikhonov’s theorem: given any
initial value, for large values of λM (V ) (which are easy to attain, as this quantity
has exponential growth as a function of V ) we are reduced to the study the
following system:{

I = CV̇ + gL(V − VL) + gCaM∞(V )(V − VCa) + gKN(V − VK)

Ṅ = λN (V )(N∞(V )−N)

Notice that by symmetry we could follow the same process with N as fast
variable, but as noted in [9] given the parameters M is faster than N , and hence
gives a better approximation2.

2In the same paper it is proved that V is the fastest variable, but as it is what one is
interested in studying removing it would be a useless dimensional reduction.
To have further information and for a proof of the reduction see [7]
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3.2 Study of the reduced system

The first thing to notice here is that the trajectories are bounded: the N -
component can take values between 0 and 1 by hypothesis, but it is not immediate
to see that we can bound V to be in a rectangle. Setting V̇ ≥ 0 one sees that

V̇ ≥ 0 ⇔ V ≤ h(N,V )

where h(N,V ) = I+gLVL+gCaM∞(V )VCa+gKNVK

gL+gCaM∞(V )+gKN
. Considering h as a function of

M and N , being it continuous on a compact set, h has a global maximum. This
suffices to say that V̇ ≥ 0 if and only if V ≤ max[0,1]×[0,1] h(M,N). With the
same calculations and the same application of Weierstrass theorem we infer that
V̇ ≤ 0 if and only if V ≥ min[0,1]×[0,1] h(M,V ). With the same estimates we
gave in Section 2.3.1 we conclude that the V−coordinate is bounded to stay in
a compact interval of R. With some calculations one can show that the voltage
satisfies the inequalities:

I + gLVL + gKVK
gL + gK

= Vmin ≤ V ≤ Vmax =
I + gLVL + gCaVCa

gL + gCa

observing that for any value of the parameters ∇h 6= 0 on [0, 1]2, that the
functions can only either increase or decrease on the sides of the square (without
critical points) and that VK is the only negative quantity involved.
If the system has an unstable equilibrium in the area where trajectories are
confined, by Theorem 2.3.4 we have existence of a limit cycle.
The nullclines have equations:{

N = I−gCaM∞(V )(V−VCa)−gL(V−VL)
gK(V−VK) V -nullcline

N = 1
2

(
1 + tanh V−V3

V4

)
N -nullcline

(3.5)

3.2.1 Bifurcation parameter: I

In this section we are going to follow the analysis by Morris and Lecar, from [10].
Let us fix values for all the parameters but I. From equation 3.5 it is evident
that the system has at least one equilibrium: the V−nullcline tends to − gL

gK
< 0

and − gCa+gL
gK

< 0 at ±∞ respectively, and has a vertical asymptote at V = VK ,
and the thesis descends by continuity of both the nullclines. With a graphical

VL -60 mV C 20 µF/cm2

VK -80 mV V1 -1.2 mV
VCa 120 mV V2 18 mV
gL 2.0 mS/cm2 V3 2 mV
gCa 4.0 mS/cm2 V4 17.4mV
gK 8.0 mS/cm2 λ̄N 0.07 (ms)−1

Table 3.1: Values for the parameters in this section, from [14].

study we can infer that the equilibrium is unique, and that its dynamical features
depend on I: as we see in Figure 3.2, changes in I only affect the V -nullcline,
and an increase in I in particular moves the equilibrium to the right, and the
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Figure 3.1: Intersection of the nullclines for I = 150, with limit cycle.

Figure 3.2: How the intersection points move as I is varied from 0 mA to 250
mA, with 50 mA between a curve and another.
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derivative of the V−nullcline at the intersection can assume different signs.
Let (VS , NS) be the coordinates of the equilibrium. By linearisation of the

system one gets that instability of the equilibrium is equivalent to the following
conditions:

gCa
d

dV
M∞(VS)(VCa − VS) > ḡ + CλN (VS) (3.6)

gCa
d

dV
M∞(VS)(VCa − VS) < ḡ + gK

d

dV
N∞(VS)(VS − VK) (3.7)

where ḡ = gL + gKNS + gCaM∞(VS) is the equivalent conductance at the
operating point. We want to show that there exists a value for I that causes
(VS , NS) to satisfy the above inequalities, and one which prevents it. Given the
geometric consequence of the variation in I this is enough to state that there is a
bounded interval of R containing all the values of I for which the equilibrium is
unstable: this follows from the observation that the right-hand side of 3.6 grows
exponentially as a function of the voltage, while the left-hand side has a linear
dependence times a bounded function.
Computing in MATLAB the coordinates of the equilibrium and the values of
the expressions above, one sees that the inequalities hold for an applied current
of 150µA, but do not for a current of 0µA. We can then perform calculations
assuming different values for I, getting Table 3.2. We can see from Table 3.2

I [µA] f1 f2 f3
51.0 4.3941 4.2967 4.9683
51.1 4.4001 4.3536 5.0214
51.2 4.4063 4.4111 5.0753
51.3 4.4128 4.4700 5.1309
51.4 4.4194 4.5295 5.1874
51.5 4.4263 4.5897 5.2448
51.6 4.4335 4.6508 5.3036
51.7 4.4409 4.7130 5.3637
51.8 4.4485 4.7758 5.4248
51.9 4.4564 4.8394 5.4871
52.0 4.4645 4.9037 5.5505

Table 3.2: f1 is right-hand side of (3.6), f2 the left-hand side of the same
inequality, f3 is the right-hand side of (3.7).

that (3.7) is always verified, implying that the eigenvalues of the system always
have the same sign. The trace of the Jacobian, however, changes sign for a
value of the current somewhere between 51.1 µA and 51.2 µA: the eigenvalues
simultaneously become of positive real part and the equilibrium loses stability,
and by Poincaré-Bendixson a stable limit cycle is generated. We say that the
system undergoes a supercritical Andronov-Hopf bifurcation.

3.2.2 Bifurcations in the plane (I, V3)

In this section we are going to use the set of parameter in Table 3.1 except
for V3, following the analysis in [14]. A change in V3 is reflected in a change
of the slope at V = 0 for the N -nullcline, and in particular we see that for
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certain values of V3 there are three equilibrium points: a stable equilibrium, an
unstable equilibrium and a saddle point in between the two. Now, increasing the

(a) (b)

Figure 3.3: For I = 30µA and V3 = 12 mV we have three equilibria. The
equilibrium to the left is stable, the middle one is a saddle point, the one to the
right is unstable.

(a) (b)

Figure 3.4: I = 39.8µA, V3 = 12 mV.

current I the V -nullcline moves upward, and the two left-most equilibria coalesce
and disappear, and the system is said to undergo a saddle-node bifurcation,
getting the same configuration as in the previous section with the generation of
a stable limit cycle by Poincaré-Bendixson Theorem. We see this phenomenon
in Figure 3.4 and 3.5. For different values of V3 we have a completely different
behaviour: starting with a small I the system has one stable equilibrium (see
Figure 3.6), and increasing the current we create two equilibrium points, of
which one is a saddle and the other is unstable. There is a small interval
of values for I around 50.5µA for which we have a bistable behaviour: two
nested limit cycles are generated, the repelling inner one contains the stable
equilibrium, the outer limit cycle is attracting: see Figure 3.7. The repelling
limit cycle surrounding the equilibrium defines an area from which solution
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(a) (b)

Figure 3.5: I = 50µA, V3 = 12 mV.

(a) (b)

Figure 3.6: I=50µA, V3 = 2 mV, there is only one stable equilibrium.
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cannot escape, hence the oscillations are small and damped, given the attraction
of the equilibrium. Outside the inner limit cycle solutions still tend to the outer
limit cycle, and behave as above. If we increase I the inner repelling limit cycle

(a) (b)

Figure 3.7: I = 50.5µA, V3 = 2 mV.

disappear, collapsing into the stable equilibrium and causing it to lose stabiity:
we have a subcritical Andronov-Hopf bifurcation. Now, fix a small value

(a) (b)

Figure 3.8: I = 55µA, V3 = 2 mV. The limit cycle has collapsed into the stable
equilibrium, generating an unstable equilibrium.

for I, say 30µA,and let V3 vary. For a small V3 we have again three equilibrium
points from left to right: stable, saddle, unstable (Figure 3.9). If we increase
V3 the point to the right becomes stable and generates an unstable limit cycle
surrounding it, and the system becomes bistable, see Figure 3.10. Increasing
V3 the unstable limit cycle around the right-most equilibrium gets closer and
closer to the saddle, degenerating in a homoclinic loop when they touch. We
can increase further V3: the homoclinic loop vanishes and qualitatively we are
left with the three equilibria we had at the first step.
Consider now the same values for V3 we have just examined, and fix a larger I,
say I = 42µA. For the first step V3 = 14.4 mV we are in the same situation as
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(a) (b)

Figure 3.9: I = 30µA, V3 = 14.4 mV.

(a) (b)

Figure 3.10: I = 30µA, V3 = 17.0 mV.
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(a) (b)

(c)

Figure 3.11: I = 30µA, V3 = 18.0 mV. The homoclinic loop in c) was plotted
integrating backwards in time starting from a point near the unstable equilibrium.
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in Figure 3.5: we have a stable limit cycle and an unstable equilibrium. Now
increase V3 to 17 mV to find a subcritical Hopf bifurcation: the equilibrium
becomes stable and generates an unstable limit cycle around it: there are now
two limit cycles, one inside the other, as in Figure 3.7, but with a different
position for the equilibrium: see Figure 3.12. Increase V3: the two limit cycles

(a) (b)

Figure 3.12: I = 42µA, V3 = 17.0 mV.

coalesce and disappear, leaving the system with just an attracting equilibrium. If

(a) (b)

Figure 3.13: I = 42µA, V3 = 18.0 mV.

we fix V3 at 4.1 mV and I ≈ 46.5µA we are in an area where small variations in
the current produce different kinds of bifurcations. In Figure 3.14 gl indicates a
set of values for the parameters for which we have a saddle-node bifurcation, hk a
set for which we have a Hopf bifurcation. Hi is a curve of homoclinic bifurcations
and Gj one of tangent bifurcations. The shaded area is where three equilibria
coexist, the striped one is where we have a limit cycle. Consider now the sequence
of points Q to X. Decreasing I from Q go through a saddle-node bifurcation
which does not generate any limit cycle, as it is given by the collapse of the
saddle point with the source to the right, and the system still has an attracting
equilibrium. Consider now Q: the system is in the usual configuration with three
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Figure 3.14: A portion of the bifurcation plane (I, V3), from [14].

equilibria, from left to right: sink, saddle point, source. At R a homoclinic loop
for the saddle point is generated: it encloses all the equilibria of the system, and
with an increase of I degenerates into a limit cycle which still goes around all the
equilibria (S). A further increase in the current generates another homoclinic
loop for the saddle point, which then turns into an unstable limit cycle (U).
The limit cycle shrinks and collapses onto the stable equilibrium, generating
a source: subcritical Andronov-Hopf bifurcation (V ). With an increase in I
the left unstable equilibrium and the saddle point coalesce with a saddle-node
bifurcation, and the system after this has a stable limit cycle with a source inside
(X).

3.2.3 Bifurcation parameters: (I, ḡCa)

In this section we are going to briefly report the different behaviours and
bifurcations one may find while changing the values for the set of parameters
(I, ḡCa): the bifurcation plane can be seen in Figure 3.16. The value fixed for
V3 is now 12 mV. Start from the top-left corner of the bifurcation diagram: for
gCa = 5.7 mS/cm2 and I = 5µA we are in a situation of bistability identical
to the one in Figure 3.10, and an increase in I causes the system to undergo a
similar homoclinic bifurcation (creation of the homoclinic loop for the saddle
point encircling the unstable equilibrium). Increasing the current I we see a
saddle node bifurcation, which annihilates the two left-most equilibria. Plotting
the voltage over time we notice that we can arbitrarily delay the spike for a
same initial point, setting the value of I closer and closer to the value of the
saddle-node bifurcation. Starting with a lover gCa, say gCa = 5.2 mS/cm2,
with I = 15µA, one gets three equilibria. Increasing gCa one goes towards a
subcritical Hopf bifurcation, to find the situation of previous step. Increasing
gCa one finds the same Hopf bifurcation, with the unstable equilibrium gaining
stability and generating an unstable limit cycle around itself. A further increase
in the current leads the system to a saddle-node bifurcation with the destruction
of the two equilibria at the left and the generation of a stable limit cycle encircling
the unstable limit cycle. Increasing the current one has a tangent bifurcation:
the two limit cycles collide and annihilate, leaving the system with only one
stable equilibrium.
If we start with gCa = 4 mS/cm2, the situation follows closely the previous step,
without the first Hopf bifurcation: increasing I from 30 µA to 120 µA one starts



40 CHAPTER 3. THE MORRIS-LECAR MODEL

Figure 3.15: The different phase portraits for the points Q to X in 3.14. kOl
denotes an equilibrium, k = 0 if stable, k = 1 if saddle, k = 2 if unstable, l is
used to distinguish them. kDl indicates a limit cycle, k = 0 if stable, k = 1 if
unstable. Image taken from [14].
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Figure 3.16: Bifurcation plane for the parameters (I, ḡCa), from [14].

(a) I = 31.52µA (b) I = 31.53µA

(c) I = 31.54µA (d) I = 31.55µA

Figure 3.17: Delay of the spike for different values of I near the saddle-node
bifurcation.
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with three equilibria, loses the stable equilibria and the saddle in a saddle-node
bifurcation which also generates a stable limit cycle by Poincaré-Bendixson;
the unstable equilibrium then gains stability in a subcritical Andronov-Hopf
bifurcation and generates an unstable limit cycle, which in the end annihilates
with the outer stable limit cycle.
If we start with gCa = 3 mS/cm2, I = 30µA, the system has one stable
equilibrium, which is a global attractor. Increasing I one finds a saddle-node
bifurcation, which generates a saddle and the unstable equilibrium on the right.
Another saddle-node bifurcation annihilates the stable equilibrium and the saddle,
with the generation of a stable limit cycle. With a subcritical Hopf bifurcation
the equilibrium at the right becomes stable and generates an unstable limit cycle,
which collapses with the outer stable limit cycle in a tangent bifurcation, and
the system in the end has an attracting equilibrium.
The last case to consider is for an even smaller gCa: for gCa = 2 mS/cm2,
I = 30µA the system only has a stable equilibrium at the left. With an
increase in I the equilibrium loses stability in a supercritical Andronov-Hopf
bifurcation, and then the generated limit cycle for high values of I shrinks onto
the equilibrium, which becomes stable again.

3.2.4 Bifurcation parameter: (I, λ̄N)

Figure 3.18: Bifurcation plane (I, λ̄N ), from [14]. In the picture, φ = λ̄N .

Fix now gCa at the value in Table 3.1: we want to analyse the different
possible behaviours of the system for different values of λ̄N . We see in Figure
3.18 that the behaviour is quite similar to the previous cases, except for the
vertically-striped area: there we have a phenomenon of tristability, with a stable
limit cycle and two stable equilibria. Fix λ̄N = 0.2 s−1, and start with a current
of I = 20µA: we are in the usual configuration with a sink, a saddle and a source.
Increasing the current first we find a subcritical Andronov-Hopf bifurcation,
where the source becomes a sink and generates an unstable limit cycle around
itself. Increase the current further: a homoclinic loop for the saddle is generated
in a homoclinic bifurcation, and this loop then becomes a stable limit cycle,
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hence the tristability of the system. To see how tristability is generated, look
at Figure 3.19. The phenomenon of tristability is then destroyed when with
an increase in I the system undergoes a saddle-node bifurcation: the stable
equilibrium and the saddle point touch and collapse. As we can see from Figure
3.18 then the system undergoes a tangent bifurcation, where the two limit cycles
touch and collapse, leaving the system with the unstable equilibrium only.
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(a) I = 35.0µA (b) I = 35.0µA

(c) I = 38.0µA (d) I = 38.0µA

(e) I = 39.0µA (f) I = 39.0µA

Figure 3.19: Generation of tristability varying I, for a fixed value of λ̄N = 0.2
s−1.
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3.2.5 Bifurcation parameters: (I, V4)

Figure 3.20: Bifurcation plane (I, V4), from [14].

Here we will see how changes in (I, V4) do not show any different mechanisms
from what we saw above. In Figure 3.20 we find the bifurcation plane: in
this case we have tristability as well, reached through a homoclinic bifurcation
or a tangent bifurcation. The saddle-node bifurcation g1 outside the area of
tristability generates/annihilates the stable node and the saddle on a stable limit
cycle, destroying/generating this.
Starting with coordinates I = 30µA, V4 = 10 mV we are in the sink-saddle-
source configuration. From here, increasing V4 we go towards a saddle-node
where the saddle and the source coalesce, leaving the system only with the stable
equilibrium. Increasing current we go through a saddle-node bifurcation after
which we are left with the unstable equilibrium surrounded by a limit cycle;
the equilibrium then acquires stability in a Andronov-Hopf bifurcation, and the
just generated limit cycle with a further increase in the current merges with the
stable limit cycle on the outside in a tangent bifurcation: as a result the system
has only one stable equilibrium at the right. From the initial point instead, if
we decrease the voltage we first see an Andronov-Hopf bifurcation, with gain of
stability for the rightmost equilibrium and generation of a limit cycle, then a
homoclinic bifurcation which gives birth to a stable limit cycle and this way we
have the tristability.
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