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What is weird? [. . . ] I want to argue that the weird is a particular
kind of perturbation. It involves a sensation of wrongness: a weird

entity or object is so strange that it makes us feel that it should not
exist, or at least that it should not exist here. Yet if the entity or

object is here, then the categories that we have up until now used to
make sense of the world cannot be valid. The weird thing is not

wrong after all: it is our conceptions that must be inadequate.

Mark Fisher, “The Weird and the Eerie”
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English Introduction

In the present dissertation we study how we can extract information about
Hamiltonian diffeomorphisms of surfaces using braids obtained from Hamilto-
nian trajectories. We are going to approach this problem from two very different
perspectives: a global point of view, in which we use braids to find estimates
of Hofer distance between diffeomorphisms in a given class, and a local one, in
which we focus on a specific Hamiltonian diffeomorphism. The tools we use are
a new flavour of Lagrangian Floer homology, recently developed by Cristofaro-
Gardiner, Humilière, Mak, Seyfaddini and Smith in [21] for the former, and
for the latter generating functions for Hamiltonian diffeomorphisms (with its
relations to Hamiltonian Floer homology). The results contained here will come
from [51], from a joint work with Ibrahim Trifa [52] and from a yet unpublished
work by the author.

0.1 Overview: setting and methods
The braid group of a surface is the fundamental group of its configuration space.
Let Σg,p be a surface with genus g ≥ 0 and p ≥ 0 boundary components different
from the sphere. Consider the natural action of the permutation group on n
letters Sn on the n cartesian power of Σg,p deprived of the fat diagonal

∆̃ = { (x1, . . . , xn)|∃i ̸= j, xi = xj }

The quotient is called n-th configuration space, and we may define the braid
group Bn,g,p by

Bn,g,p := π1

(
(Σng,p \ ∆̃)/Sn

)
When g = 0, p = 1, i.e. in the case of the disc, we recover the usual braid group,
described by the classical presentation

Bn =

〈
σ1, . . . , σn−1

∣∣∣∣∣ σiσj = σjσi : |i− j| > 1

σiσi+1σi = σi+1σiσi+1 : 1 ⩽ i ⩽ n− 2

〉
The linking number of a braid, also called “exponent”, is the group homomor-
phism

Bn,0,1 → Z

xi
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which sends the generators to 1.

In this work we study Hamiltonian diffeomorphisms using the braids formed
by their orbits. A Hamiltonian diffeomorphism is the flow at time 1 of a Hamil-
tonian vector field, which in turn is a gradient vector field of a function with
respect to a symplectic form. Ultimately, the linking numbers carry information
about Hamiltonian diffeomorphism because of a variational principle describing
its fixed points. This principle states that critical points of the action functional,
defined on the loop space of a symplectic manifold, are precisely closed Hamilto-
nian orbits. A Morse-like theory may be defined for the action functional: this
is, philosophically, how Floer theory is defined. The generators of the Floer ho-
mology groups are then closed Hamiltonian loops, and the differential is defined
counting perturbed pseudoholomorphic cylinders with asymptotics at Hamilto-
nian loops. It turns out that pseudoholomorphic curves (in our case, the graphs
of Floer curves) in 4-manifolds intersect positively, and this fact admits a braid
theoretical interpretation: the linking numbers of braids formed by Hamiltonian
orbits increase along the Floer differential.

In the direction of research described in the paragraph “A linking filtration”
below, we discretise the variational problem to finite dimensions using gener-
ating functions: their critical points are in bijection with the fixed points of
the diffeomorphisms they represent. From infinite dimensional Floer theory, we
pass to Morse theory on a non-compact space.

A work of Patrice Le Calvez [44] shows that, for a specific choice of generat-
ing function, linking numbers of orbits still increase along the Morse differential.
We define the self-linking number of a fixed point in a way that is consistent
with the linking numbers of all the possible pairs of orbits, to obtain a filtration
on the tensor product complex. Such filtration also exists for other generating
functions, and we prove its existence using a theorem of uniqueness for gen-
erating functions due to Viterbo. After this, we go back to the Floer setting
and study the behaviour of the filtration we defined under the higher homology
operations between Floer complexes. The tool here is explicitly the positivity of
intersections between holomorphic curves, which in the more general setting of
punctured holomorphic curves in 4-dimensional symplectisations is translated
into the positivity of the Siefring intersection product. The main element of
novelty is given by the structural results we obtain via generating functions.
We report that in the literature similar filtrations have already been observed,
for instance see [35], [55] and [54], but that these works use an approach based
on asymptotic analysis of pseudoholomorphic curves, which is the backbone of
the definition of the Siefring product. We expect that in the future the fil-
tration we construct here will bear dynamical applications, possibly using its
Floer-theoretical definition.

The positivity of intersections between holomorphic curves appears in the
paragraph “Braids and Hofer estimates” as well, hidden in the definition of the



0.2. MAIN RESULTS AND SKETCH OF THE PROOFS xiii

action for generators of the complex. The theory we describe is a Lagrangian in-
tersection Floer homology in the symmetric product. It also admits a variational
principle, and critical points of the action functional now are (capped) paths
between a Lagrangian torus in the symmetric product to itself. The differential
will be defined by counts of perturbed pseudoholomorphic discs with Lagrangian
boundary conditions in the symmetric product. The positivity of intersection we
have here is between the pseudoholomorphic discs and a holomorphic divisor6 of
(real) codimension 2. This phenomenon is crucial in the proof of the existence
of an action filtration in our Floer theory, and in the monotonicity of the action
along Floer continuation maps. The specific shape the action functional takes
in this setting, together with Hofer Lipschitz properties of spectral invariants of
this Floer theory, allows us to perform Hofer measurements based on braid type
of Hamiltonian diffeomorphism in a specific class, which we define below. The
result is an estimate of the Hofer norm of Hamiltonian diffeomorphisms based
on the complexity of the braid they draw: loosely speaking, the more complex
the braid is, the more energy it takes to draw it.

0.2 Main results and sketch of the proofs
Braids and Hofer estimates The content of this section will be presented
in Chapter 2.

We work on an arbitrary compact surface Σg,p with genus g ≥ 0 and p ≥ 1
boundary components. A collection L of k+g circles is said to be pre-monotone
if it satisfies certain geometric conditions (detailed in Definition 2.2.1): we are
interested in the group of compactly supported Hamiltonian diffeomorphisms
that fix L as a set. To every such diffeomorphism φ we may associate an
element b(φ) of the braid group of the surface. It turns out, as we shall see in
Theorem 2.2.3, that the Hofer norm of φ may be estimated from below by a
function that encodes the complexity of the braid b(φ). From now on in this
introduction we assume that Σg,p = D, since the main result is considerably
easier to state in this setting.

Theorem 0.2.1. If L is pre monotone in the unit disc D, and if φ fixes L, then

∥φ∥ ≥ c(L)|lk(b(φ))|

where c(L) is a constant which only depends on L.

The definition of the invariant lk, the “linking number”, may be found in
Section 1.1, and the one of the Hofer norm in Section 1.2. An analogous result
for general surfaces with boundary still holds, and its proof is contained in the
above-mentioned joint work with Trifa [52]. The statement in full generality
may be found in Theorem 2.2.3.

6The discs counted by the differential are not really pseudoholomorphic, because of a
Hamiltonian perturbation term. In the construction of the homology theory however one has
to change the Hamiltonian to a time-dependent constant in a neighbourhod of this divisor,
thus forcing holomorphicity of the discs there.
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A corollary of the Theorem is that we may estimate from below the distance
between Hamiltonian diffeomorphisms preserving a common L in terms of their
braid types. We use this to define, following an idea of Frédéric Le Roux, a
family of norms on the braid group (or a proper subgroup, when necessary), for
which we provide estimates from below.

We wish to highlight that it is the first time, at least at the best of our
knowledge, that this a Hofer estimate of this kind is given without relying on
non-trivial homotopy of the surface. It is indeed possible to see our results as a
generalisation of those in [46, Section 1.2] and of [41, Theorem 1]. In the former,
Le Roux considers the standard annulus

A := (0, 1)× S1

and a smaller one

A := (a, b)× S1 ⊂ A, 0 < a < b < 1

The group of compactly supported Hamiltonian diffeomorphisms of A preserving
A admits a morphism to Z, the rotation number rot. This function measures
how many times A turns around following the generator of the homotopy of
A, along any compactly supported isotopy between the identity and φ. Using
the Energy-Capacity inequality in the universal covering, Le Roux then finds
a lower bound for the Hofer norm of such a diffeomorphism in terms of the
rotation number only:

∥φ∥ ≥ O (|rot(φ)|)

Khanevsky then, answering to a question of Le Roux’s from [46], considers a
non displaceable disc D in A and provides a solution to an analogous problem:
to each compactly supported Hamiltonian diffeomorphism φ of A such that
φ(D) = D we associate its rotation number rot(φ). In this larger context,
Khanevsky proves a similar inequality as above, using the Entov-Polterovich
quasimorphisms defined in [22].

Let us now describe the strategy of the proof of our result on the disc. The
proof for general compact surfaces with boundary relies on roughly the same
idea, but with some extra technical difficulties to overcome.

The homology theory constructed by the authors in [21] is an invariant of
a collection of circles L which has to satisfy certain geometric assumptions,
and of a Hamiltonian diffeomorphism φ. In particular, Hofer-Lipschitz spectral
invariants

cL(φ) ∈ R

are defined. We embed symplectically our discs D into spheres S2(1 + s) of
different areas. Each embedding gives rise to a different homology theory, and
with it different Hofer-Lipschitz spectral invariants. We cannot compute the
spectral invariants directly, as often is the case outside very specific examples,
but can instead compute their difference. In order to provide a more precise
description of the proof, we need to give a basic description of the Floer complex.
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Let L be a pre-monotone collection of k circles in D, and denote by Ls its
image in S2(1 + s). We consider the symmetric product SymkS2(1 + s): it can
be given the structure of a symplectic manifold. The collection Ls defines a
Lagrangian torus

SymkLs

in the quotient, and for s in a certain interval this torus is monotone. Given
a Hamiltonian diffeomorphism φ ∈ Hamc(D) generated by a Hamiltonian H,
denote by φs the extension by the identity to S2 and by Hs the extension of H
by 0. The complex

CF (Hs, Ls)

we are interested in is generated by capped Hamiltonian paths from SymkLs
to itself. A capping is a homotopy between such Hamiltonian path and the
constant path at a point in SymkLs. The differential will be defined counting
holomorphic discs in SymkS2(1+ s) with Lagrangian boundary conditions. The
homology, as per [21, Lemma 6.6], is well defined, and by [21, Lemma 6.10] it
is non zero: to define spectral invariants, we now only need to have an action
filtration. We now recall from [21] that there are two monotonicity constants
associated to SymkLs, a strictly positive λ > 0 and a positive or null η ≥ 0.
Denote now by ∆ the fat diagonal in the symmetric product:

∆ :=
{
[x1, . . . , xk] ∈ SymkS2(1 + s)|∃i ̸= j, xi = xj

}
and let ŷ be a generator of the Floer complex. Its action is defined to be

Aη
H(ŷ) :=

∫ 1

0

SymHt(y(t)) dt−
∫
[0,1]×[0,1]

ŷ∗ωX − η[ŷ] ·∆

It is also shown in [21] that changing capping shifts the action by an integer
multiple of λ, and that the action is monotone along the differential (strictly
increasing or decreasing depending on the conventions).

We can now explain how to compute the difference of spectral invariants
announced above. Let us consider s1 and s2 parameters for our embeddings.
The Floer complexes

CF (Hs1 , Ls2), CF (Hs1 , Ls2)

are in fact isomorphic as chain complexes: to prove this point, choose any
biholomorphism

S2(1 + s1) → S2(1 + s2)

and it will descend to a biholomorphism

SymkS2(1 + s1) → SymkS2(1 + s2)

This biholomorphism induces a chain complex isomorphism, as it is easy to see.
This chain complex isomorphism will not however respect the action filtration,
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but it turns out that it will simply shift it uniformly. In order to show this
we use an interesting consequence of the definition of pre-monotonicity: for
embeddings in S2(1+ si) with different area parameter s, the two constants λsi
associated to Symk(Lsi) will coincide, while the two ηsi will be different. Now,
we mention that the spectral invariants cLs

(φs) satisfy a (Spectrality) axiom:

∃ŷ ∈ CF (Hs, Ls) such that Aηs
Hs

(ŷ) = cLs
(φs)

This implies that the difference of spectral invariants will be equal to this action
shift. Because this action shift is uniform, moreover, we may choose any pair
of generators related by the isomorphism to compute it. Another property we
obtain is that the difference we want to compute

cLs1
(φs1)− cLs2

(φs2)

is additive under concatenation of Hamiltonian diffeomorphisms preserving L.
Because of this last property, we can focus our attention on Hamiltonian dif-
feomorphisms of particularly simple braid type, generators of Bk for instance.
Consider a pair of capped Hamiltonian paths ŷi from Symk(Lsi) to themselves
related by this isomorphism, and we assume that the two cappings, up to ho-
motopy, are entirely contained in

Symk(D) ⊂ Symk(S2(1 + si))

Recall the definition of the action given above: in this context we easily see
that

cLs1
(φs1)− cLs2

(φs2) = Aηs1
Hs1

(ŷ1)−Aηs2
Hs2

(ŷ2) = (ηs2 − ηs1)[ŷ1] ·∆

Such capping are homotopies between the braid type of φ, b(φ), and the
trivial braid: if we can compute the term [ŷ1] ·∆ from above we are done. This
computation is carried out in Section 2.4.2, after describing a class of inter-
sections of cappings with ∆ which are guaranteed to be transverse. Given the
Hofer Lipschitz property of the difference of spectral invariants, the intersection
number we find (up to multiplication by a known constant) bounds from below
the Hofer norm of φ.

A linking filtration The content of this section is the object of Chapter 3.
Let us consider a compactly supported Hamiltonian diffeomorphism φ of

R2. Let H be any Hamiltonian generating it. Any diffeomorphism of this kind
admits a generating function

h : R2 × Rk → R

which is quadratic at infinity. After perturbing the generating function, for
generic g close to the standard metric on R2×Rk, the Morse complex CM(h, g;Z)
is defined. The generator of the Morse complex being critical points of h, they
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are in bijection with the set of fixed points of φ. It is known that the homology of
this complex is isomorphic to the homology of the Floer complex CM(H,J ;Z)
of φ, defined for a generic choice of almost complex structure J . The Floer com-
plex is generated by fixed points of φ, and its differential is defined counting
cylinders

u : R× S1 → R2

satisfying the Floer equation

∂su+ J(∂tu−XH(u)) = 0

It is a classical fact that the graph of u,

u : R× S1 → R× S1 × R2

is pseudoholomorphic, and pseudoholomorphic curves in 4-manifolds intersect
positively. Consider now four distinct fixed points x±, y± of φ, such that there
are two Floer cylinders, u and v, asymptotic to these generators:

lim
s→±∞

u(s, ·) = x±, lim
s→±∞

v(s, ·) = y±

Seeing the pair of cylinders (u, v) as a homotopy from the braid (x−, y−) to the
braid (x+, y+), and using the positivity of intersections of holomorphic curves
we conclude that

lk(x−, y−) ≤ lk(x+, y+)

It is possible to obtain a similar result using generators functions: Patrice Le
Calvez in [44] proves it decomposing φ as a product of twist maps, and con-
structing a generating function for which the linking number between orbits has
a Lyapunov property. Using this and a dominated splitting of R2 × Rk (still
defined in [44]), we prove the following:

Theorem 0.2.2. Let φ a compactly supported Hamiltonian diffeomorphism of
the plane with its standard symplectic form dx ∧ dy. Then for any generating
function quadratic at infinity S : R2 × Rk → R for φ, there exists a non-
degenerate quadratic form Q on Rl, a Riemannian metric g on R2+k+l such
that the pair (S⊕Q, g) is both Palais-Smale and Morse-Smale, and making (an
extension of) the function

I : CM(S ⊕Q, g;Z)⊗ CM(S ⊕Q, g;Z) → Z,

I(p⊗ q) :=

{
1
2 lk(γx, γy) p ̸= q

−
⌈
CZ(γp)

2

⌉
p = q

into an increasing filtration of the tensor complex.

The number CZ(γp) in the Theorem is the Conley-Zehnder index of γp,
which coincides, up to translation, with the Morse index of p. The multiplicative
factor of 1

2 appears in light of our normalisation of the linking number.
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The proof of the Theorem is divided into two parts: we show the existence
of this kind of filtration for generating functions of Le Calvez type, and then
push it forward to all other generating functions.

The proof on the generating functions defined by Calvez relies on the an-
nounced Lyapunov property for the linking number, and on the study of the
asymptotics of different gradient lines γ1, γ2 approaching the same critical point
x. There is in fact an interplay between the dominated splitting at x and the
asymptotic linking of curves represented by points γ1(t) and γ2(t) for t ≫ 0
(it is not clear for general generating functions how points in the vector bundle
R2 ×Rk are associated to loops in R2, but the construction that Le Calvez uses
makes this relation apparent).

Once we obtain the existence of the filtration for a Le Calvez generating
function, we extend it to arbitrary generating functions using Viterbo’s Unique-
ness Theorem [73], [69]. In order to apply it, we have to show that the ones
defined by Le Calvez are generating functions quadratic at infinity in the classi-
cal sense, up to gauge equivalence: this is one of the three elementary operations
on generating functions as defined by Viterbo, and it induces an isomorphism of
Morse complexes. Filtrations may also be pushed forward along these elemen-
tary operations, so that an application of the Uniqueness Theorem then proves
the main result.

We prove a folklore theorem about the relation between the Hofer metric
on Hamc(R2) and the supremum norm of generating functions. If two diffeo-
morphisms φ,ψ are Hofer-close, then there are two generating functions, one
for φ and one for ψ, which are C 0-close: this is the content of Lemma 3.4.5.
We also show that the filtration I defined above increases along continuation
maps between generating functions. With these elements we are able to prove
a simple case of [3, Theorem 2]: for small Hofer perturbations, linking numbers
of orbits persists (see Proposition 3.4.6).

We now go back to the Floer perspective: let φ be a Hamiltonian diffeomor-
phism of a closed oriented surface Σg of genus g ≥ 1 or of R2 (in which case we
also assume φ is compactly supported). We denote by Σ the surface on which
φ is defined. Some classical results of Hofer, Wysocki and Zehnder show that,
near critical points of the action functional of φ, there is an infinite dimensional
analogue of the dominated splitting defined by Le Calvez. Choose a fixed point
x of φ. They show, as a start, that each eigenfunction of the linearised Floer
operator at x has a well-defined linking number with respect to the x itself. If
two different eigenfunctions share the same eigenvalue moreover, then they have
the same linking number with x. For each integer n, the space of eigenfunctions
having linking number n with x has dimension 2, and the function associating
to an eigenvalue the corresponding linking number is monotone increasing.

Much like in the Morse case, a cylinder

u : R× S1 → Σ

negatively (resp. positively) asymptotic to a fixed point x will locally be rep-
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resented by a sum of eigenfunctions with positive (resp. negative) eigenvalues,
and by the above facts about eigenfunctions and linking numbers there are a
priori bounds on the linking number between the curves

us : S1 → Σ, t 7→ u(s, t) and x : S1 → Σ, t 7→ x(t)

for s → −∞ (resp. s → +∞). These estimates are used to define the Siefring
product between Floer cylinders, and its positivity gives us the Floer analogue
of the main result we have in the Morse setting:

Theorem 0.2.3. Let φ ∈ Ham(Σ) (compactly supported if Σ = R2) be non
degenerate (if φ is compactly supported, we only require non degeneracy on the
interior of the support) and generated by a Hamiltonian H. Then for generic
almost complex structure J , we have an increasing filtration I on

CM(H,J ;Z)⊗ CM(H,J ;Z)

defined on generators by

I(x⊗ y) :=

{
1
2 lk(x, y) x ̸= y

−
⌈
CZ(x)

2

⌉
x = y

We immediately see that the filtrations obtained via Floer and Morse theo-
retical methods, perhaps unsurprisingly, coincide.

We finish Chapter 3 studying how the filtration I behaves with respect to
the pair of pants product in Floer homology. We define the pair of pants with
p+ 1 legs

Sp := S2 \ {a1, . . . , ap+1} with i ̸= j ⇒ ai ̸= aj

as the two dimensional sphere with p+ 1 punctures, of which one positive and
the remaining p ones negative. The pair of pants product is a map

Pp : CF (H,J ;Z)⊗p → CF (H#p, J ;Z)

that to p fixed points of φ associates a fixed point of φp. Remark that CF (H#p, J ;Z)⊗2

may be endowed with the filtration I as above, while we may define Ip on the
source space of Pp:

Ip((x
1
1 ⊗ x1p)⊗ (x21 ⊗ x2p)) :=

p∑
j=1

I(x1j ⊗ x2j )

The operation Pp is defined counting curves

u : Sp → Σ

which are pseudoholomorphic far from the punctures, and which satisfy Floer
equation near them. Their graphs

ū : Sp → Sp × Σ

in this case as well turns out to be pseudoholomorphic. We aim to show the
following
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Theorem 0.2.4. For x11, . . . , x1p, x21, . . . , x2p fixed points of φ, we have

Ip((x
1
1 ⊗ · · · ⊗ x1p)⊗ (x21 ⊗ · · · ⊗ x2p)) ≤ I(Pp(x11 ⊗ · · · ⊗ x1p)⊗Pp(x21 ⊗ · · · ⊗ x2p))

To prove this Theorem we are lead to compute Siefring intersection products
ū ∗ v̄ between graphs of pairs of pants u, v involved in the definition of Pp. We
need to distinguish two possibilities: either u = v or u ̸= v. The former case is
very simple to deal with: a simple degree count is enough, because both I and Ip
are functions of Conley-Zehnder indices of the fixed points x11, . . . , x1p, x21, . . . , x2p.
In the other case, it turns out that ū ∗ v̄ bounds from below the difference

Ip((x
1
1 ⊗ · · · ⊗ x1p)⊗ (x21 ⊗ · · · ⊗ x2p))− I(Pp(x11 ⊗ · · · ⊗ x1p)⊗Pp(x21 ⊗ · · · ⊗ x2p))

so that it is enough to prove ū ∗ v̄ ≥ 0. Pseudoholomorphicity is enough to
conclude this, and proves the Theorem.
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Dans cette thèse, nous étudions comment nous pouvons extraire des informa-
tions sur les difféomorphismes hamiltoniens de surfaces en utilisant des tresses
obtenues à partir de trajectoires hamiltoniennes. Nous allons aborder ce prob-
lème depuis deux points de vue très différents : un point de vue global, dans
lequel nous utilisons les tresses pour trouver des estimations de la distance
d’Hofer entre les difféomorphismes d’une classe donnée, et un autre, local,
dans lequel nous nous concentrons sur un difféomorphisme hamiltonien spé-
cifique. Les outils que nous utilisons sont un variant de l’homologie de Floer
lagrangianne, récemment défini par Cristofaro-Gardiner, Humilière, Mak, Sey-
faddini et Smith dans [21] pour le premier point de vue, et pour le deuxième
les fonctions génératrices pour les difféomorphismes hamiltoniens (avec ses re-
lations avec l’homologie de Floer hamiltonienne). Les résultats contenus ici
proviendront de [51], d’un travail avec Ibrahim Trifa [52], et d’un travail pas
encore publié de l’auteur.

0.3 Un aperçu: contexte et méthodes

Le groupe de tresses d’une surface est le groupe fondamental de son espace de
configuration. Soit Σg,p différente de la sphère, avec genre g ≥ 0 et p ≥ 0 com-
posantes de bord. Considérons l’action naturelle du groupe des permutations
sur n lettres Sn sur l’n-ième puissance cartésienne de Σg,p privée de la grande
diagonale

∆̃ = { (x1, . . . , xn)|∃i ̸= j, xi = xj }

Le quotient est appelé n-ième espace de configuration, et nous pouvons définir
le groupe de tresses Bn,g,p par

Bn,g,p := π1

(
(Σng,p \ ∆̃)/Sn

)
Lorsque g = 0, p = 1, c’est-à-dire dans le cas du disque, on retrouve le groupe
de tresses habituel, décrit par la présentation classique

Bn =

〈
σ1, . . . , σn−1

∣∣∣∣∣ σiσj = σjσi : |i− j| > 1

σiσi+1σi = σi+1σiσi+1 : 1 ⩽ i ⩽ n− 2

〉

xxi
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Le nombre d’enlacement d’une tresse, également appelé "exposant" dans la lit-
térature de la topologie de la basse dimension, est l’homomorphisme de groupes

Bn,0,1 → Z

qui envoie les générateurs sur 1.

Dans ce travail, nous étudions les difféomorphismes hamiltoniens en util-
isant les tresses formées par leurs orbites. Un difféomorphisme hamiltonien est
le flot au temps 1 d’un champ de vecteurs hamiltonien, qui à son tour est un
champ de vecteurs de gradient d’une fonction par rapport à une forme symplec-
tique. En définitive, les nombres d’enlacement contiennent des informations sur
le difféomorphisme hamiltonien en raison d’un principe variationnel décrivant
ses points fixes. Ce principe stipule que les points critiques de la fonctionnelle
d’action, définie sur l’espace des lacets d’une variété symplectique, sont précisé-
ment des orbites hamiltoniennes fermés. Une théorie de type Morse peut être
construite pour la fonctionnelle d’action : c’est ainsi, philosophiquement, que la
théorie de Floer est définie. Les générateurs des groupes d’homologie de Floer
sont alors des lacets hamiltoniennes fermés, et la différentielle est calculée en
comptant des cylindres pseudoholomorphes perturbés avec des asymptotiques
aux lacets hamiltoniens. Il s’avère que les courbes pseudo-holomorphes (dans
notre cas, les graphes des courbes de Floer) dans les variétés de dimension 4
s’intersectent positivement, et ce fait admet une interprétation du point de vue
de la théorie des tresses : les nombres d’enlacement des tresses formées par les
orbites hamiltoniennes augmentent le long de la différentielle de Floer.

Dans la direction de recherche décrite dans le paragraphe “Une filtration en
enlacements” ci-dessous, nous discrétisons le problème variationnel en dimen-
sion finie en utilisant les fonctions génératrices : leurs points critiques sont en
bijection avec les points fixes des difféomorphismes qu’elles représentent. De la
théorie de Floer, définie en dimension infinie, nous passons à la théorie de Morse
sur un espace non compact mais fini-dimensionnel.

Un travail de Patrice Le Calvez [44] montre que, pour un choix spécifique
de fonction génératrice, les nombres d’enlacement des orbites augmentent tou-
jours le long de la différentielle de Morse. Nous définissons le nombre d’auto-
enlacement d’un point fixe d’une manière qui est cohérente avec les nombres
d’enlacement de toutes les paires d’orbites possibles, afin d’obtenir une filtra-
tion sur le complexe produit tensoriel. Une telle filtration existe aussi pour
d’autres fonctions génératrices, et nous prouvons son existence en utilisant un
théorème d’unicité des fonctions génératrices dû à Viterbo. Après cela, nous
revenons au cadre de la théorie de Floer et étudions le comportement de la fil-
tration que nous avons définie sous les opérations de produit homologique entre
les complexes de Floer. L’outil utilisé ici est explicitement la positivité des inter-
sections entre courbes holomorphes, qui, dans le cadre plus général des courbes
holomorphes piqûrées dans les symplectisations de dimension 4, se traduit dans
la positivité du produit d’intersection de Siefring.
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Le principal élément de nouveauté réside dans les résultats structurels que
nous obtenons à travers des fonctions génératrices. Nous signalons que des
filtrations similaires ont déjà été observées dans la littérature, voir par exemple
[35], [55] et [54], mais que ces travaux utilisent plutôt une approche basée sur
l’analyse asymptotique des courbes pseudo-holomorphes, qui est l’épine dorsale
de la définition du produit de Siefring. Nous nous attendons qu’à l’avenir la
filtration que nous construisons ici aura des applications dynamiques, peut-être
en utilisant sa définition en homologie de Floer.

La positivité des intersections entre courbes holomorphes apparaît égale-
ment dans le paragraphe “Tresses et estimations de norme d’Hofer”, cachée dans
la définition de l’action des générateurs du complexe. La théorie que nous
décrivons est une homologie de Floer lagrangienne dans le produit symétrique.
Elle admet également un principe variationnel, et les points critiques de la fonc-
tionnelle d’action sont maintenant des chemins (avec capping) dans le produit
symétrique entre un tore lagrangien et lui-même. La différentielle sera définie
par un comptage de disques pseudo-holomorphes perturbés, avec conditions la-
grangiennes au bord, dans le produit symétrique. La positivité des intersections
que nous avons ici est entre les disques pseudoholomorphes et un diviseur holo-
morphe 7 de codimension (réelle) 2. Ce phénomène est crucial dans la preuve
de l’existence de la filtration d’action dans notre théorie de Floer, et dans la
monotonicité de l’action le long des applications de continuation de Floer. La
forme spécifique que prend la fonctionnelle d’action dans ce cadre, ainsi que
les propriétés de Hofer Lipschitz des invariants spectraux de cette théorie de
Floer, nous permettent d’effectuer des mesures d’énergie d’Hofer basées sur le
type de tresse du difféomorphisme hamiltonien dans une classe spécifique, que
nous définissons ci-dessous. Le résultat est une estimation de la norme d’Hofer
des difféomorphismes hamiltoniens basée sur la complexité de la tresse qu’ils
dessinent : en gros, plus la tresse est complexe, plus il faut d’énergie pour la
dessiner.

0.4 Les résultats principaux et leurs preuves

Tresses et estimations de norme d’Hofer Le contenu de cette section sera
présenté au chapitre 2.

Nous travaillons sur une surface compacte arbitraire Σg,p de genre g ≥ 0
et p ≥ 1 composantes de bord. Une collection L de k + g cercles est dite pré-
monotone si elle satisfait certaines conditions géométriques (détaillées dans la
Définition 2.2.1) : nous nous intéressons au groupe de difféomorphismes hamil-
toniens à support compact qui fixent L en tant qu’ensemble. A chaque difféo-
morphisme φ de ce type nous pouvons associer un élément b(φ) du groupe de

7Les disques comptés par la différentielle ne sont pas vraiment pseudoholomorphes, à cause
d’un terme de perturbation hamiltonienne. Dans la construction de la théorie de l’homologie, il
faut cependant changer l’hamiltonien en une constante dépendante du temps dans un voisinage
de ce diviseur, forçant ainsi l’holomorphie des disques à cet endroit.
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tresses de la surface Bk,g,p. Il s’avère, comme nous le verrons dans le théorème
2.2.3, que la norme de Hofer de φ peut être bornée du bas par une fonction
qui encode la complexité de la tresse b(φ). L’énoncé pour le disque est le plus
simple, et nous le rapportons ci-dessous :

Theorem 0.4.1. Si L est pré-monotone dans le disque standard D, et si φ fixe
L, alors

∥φ∥ ≥ c(L)|lk(b(φ))|

où c(L) est une constante qui ne dépend que de L.

La définition de l’invariant lk, le “nombre d’enlacement” se trouve en Section
1.1, et celle de la norme d’Hofer en Section 1.2. Le résultat pour des surfaces
à bord plus générales est bien plus compliqué à énoncer, essentiellement parce
que nous autorisons un nombre quelconque de composantes de bord pour la
surface. La preuve est contenue dans le travail avec Trifa [52], et l’énoncé en
toute généralité se trouve dans le théorème 2.2.3.

Un corollaire du théorème est que l’on peut estimer par le bas la distance en-
tre les difféomorphismes hamiltoniens préservant une configuration pré-monotone
commune L en termes de leurs types de tresses. Nous utilisons ceci pour définir,
en suivant une idée de Frédéric Le Roux, une famille de normes sur le groupe
de tresses (ou un sous-groupe propre, si nécessaire), pour lesquelles nous four-
nissons des estimations par le bas.

Nous souhaitons souligner que c’est la première fois, du moins à notre con-
naissance, qu’une telle estimation d’énergie d’Hofer est donnée sans s’appuyer
sur une homotopie non triviale de la surface. Il est en effet possible de considérer
nos résultats comme une généralisation de ceux de [46, Section 1.2] et de [41,
Théorème 1]. Dans le premier, Le Roux considère l’anneau standard

A := (0, 1)× S1

et un anneau plus petit

A := (a, b)× S1 ⊂ A, 0 < a < b < 1

Le groupe des difféomorphismes hamiltoniens à support compact de A préser-
vant A admet un morphisme vers Z, le nombre de rotation rot. Cette fonction
mesure le nombre de fois que A tourne autour du générateur de l’homotopie de
A, le long de n’importe quelle isotopie à support compact entre l’identité et φ.
En utilisant l’inégalité capacité-énergie dans le revêtement universel, Le Roux
trouve ensuite une borne inférieure pour la norme de Hofer d’un tel difféomor-
phisme en termes de nombre de rotation seulement :

∥φ∥ ≥ O (|rot(φ)|)

Khanevsky, répondant à une question de Le Roux dans [46], considère un disque
non déplaçable D dans A et fournit une solution à un problème analogue : à
chaque difféomorphisme hamiltonien compactement supporté φ de A tel que
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φ(D) = D, nous associons son nombre de rotation rot(φ). Dans ce contexte
plus large, Khanevsky prouve une inégalité similaire à la précédente, en utilisant
les quasimorphismes d’Entov-Polterovich définis dans [22].

Décrivons maintenant la stratégie de la preuve de notre résultat sur le disque.
La démonstration pour les surfaces compactes à bord générales repose grosso
modo sur la même idée, mais il y a quelques difficultés techniques supplémen-
taires à surmonter.

La théorie homologique construite par les auteurs dans [21] est un invariant
d’une collection de cercles L qui doit satisfaire certaines hypothèses géométriques,
et d’un difféomorphisme hamiltonien φ. En particulier, les invariants spectraux

cL(φ) ∈ R

sont définis, et ils ont une propriété de lipschitzianité par rapport à la norme
de Hofer. Nous plongeons symplectiquement nos disques D dans des sphères
S2(1 + s) de différentes aires. Chaque plongement donne lieu à une théorie
homologique différente, et avec elle des invariants spectraux Hofer-Lipschitz
différents. Nous ne pouvons pas calculer directement les invariants spectraux,
comme c’est souvent le cas en dehors d’exemples très spécifiques, mais nous
pouvons calculer leur différence. Afin de fournir une description plus précise de
la preuve, nous devons donner une description de base du complexe de Floer.

Soit L une collection pré-monotone de k cercles dans D, et désignons par Ls
son image dans S2(1+s). Nous considérons le produit symétrique SymkS2(1+s)
: on peut lui donner une structure de variété symplectique. La collection Ls
définit un tore lagrangien

SymkLs

dans le quotient, et pour s dans un certain intervalle ce tore est monotone. Etant
donné un difféomorphisme hamiltonien φ ∈ Hamc(D) généré par un hamiltonien
H, notons par φs l’extension par l’identité à S2 et par Hs l’extension de H par
0 à la sphère. Le complexe

CF (Hs, Ls)

qui nous intéresse est engendré par des chemins hamiltoniens avec capping de
SymkLs à lui-même. Un capping est une homotopie entre un tel chemin hamil-
tonien et le chemin constant en un point de SymkLs. La différentielle sera définie
en comptant les disques holomorphes dans SymkS2(1 + s) avec des conditions
lagrangiennes aux bords. L’homologie, selon [21, Lemma 6.6], est bien définie,
et par [21, Lemma 6.10] elle est non nulle : pour définir des invariants spectraux,
nous avons maintenant seulement besoin d’avoir une filtration d’action. Nous
rappelons maintenant, suivant [21], qu’il existe deux constantes de monotonie
associées à SymkLs, un λ > 0 strictement positif et un η ≥ 0 positif ou nul.
Soit maintenant ∆ la grosse diagonale du produit symétrique :

∆ :=
{
[x1, . . . , xk] ∈ SymkS2(1 + s)|∃i ̸= j, xi = xj

}
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Soit ŷ un générateur du complexe de Floer : son action est définie comme étant

Aη
H(ŷ) :=

∫ 1

0

SymHt(y(t)) dt−
∫
[0,1]×[0,1]

ŷ∗ωX − η[ŷ] ·∆

On montre également dans [21] que le changement de capping change l’action
d’un multiple entier de λ, et que l’action est monotone le long de la différentielle
(strictement croissante ou décroissante selon les conventions).

Nous pouvons maintenant expliquer comment calculer la différence des in-
variants spectraux annoncée ci-dessus. Considérons les paramètres s1 et s2 pour
nos plongements. Les complexes de Floer

CF (Hs1 , Ls2), CF (Hs1 , Ls2)

sont en fait isomorphes en tant que complexes de chaînes. Pour prouver ce
point, choisissons n’importe quel biholomorphisme

S2(1 + s1) → S2(1 + s2)

et il descendra à un biholomorphisme

SymkS2(1 + s1) → SymkS2(1 + s2)

Ce biholomorphisme induit un isomorphisme de complexes de chaînes, comme
l’on peut aisément montrer. Cet isomorphisme de complexes de chaînes ne
respectera cependant pas la filtration d’action, mais il la changera de façon
uniforme. Pour montrer cela, nous utilisons une conséquence intéressante de la
définition de la pré-monotonicité : pour des plongements dans S2(1 + si) avec
paramètres d’aire s différents, les deux constantes λsi associées à Symk(Lsi)
coïncideront, tandis que les deux ηsi seront différents. Remarquons maintenant
que les invariants spectraux cLs

(φs) satisfont un axiome de spectralité :

∃ŷ ∈ CF (Hs, Ls) tel que Aηs
Hs

(ŷ) = cLs
(φs)

Cela implique que la différence des invariants spectraux sera égale à ce dé-
calage d’action. Comme ce décalage d’action est uniforme, nous pouvons choisir
n’importe quelle paire de générateurs liés par l’isomorphisme pour le calculer.
Une autre propriété que nous obtenons est que la différence que nous souhaitons
calculer

cLs1
(φs1)− cLs2

(φs2)

est additive sous concaténation de difféomorphismes hamiltoniens préservant L.
Grâce à cette dernière propriété, nous pouvons concentrer notre attention sur
les difféomorphismes hamiltoniens de type de tresse particulièrement simple, les
générateurs de Bk par exemple. Considérons une paire de chemins hamiltoniens
avec cappings ŷi de Symk(Lsi) à lui-même reliés par cet isomorphisme, et nous
supposons que les deux cappings, à homotopie près, soient entièrement contenus
dans

Symk(D) ⊂ Symk(S2(1 + si))
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Rappelons la définition de l’action donnée ci-dessus : dans ce contexte, nous
voyons facilement que

cLs1
(φs1)− cLs2

(φs2) = Aηs1
Hs1

(ŷ1)−Aηs2
Hs2

(ŷ2) = (ηs2 − ηs1)[ŷ1] ·∆

De tels cappings sont des homotopies entre le type de tresse de φ, b(φ),
et la tresse triviale : si nous réussissons à calculer le terme [ŷ1] · ∆ à partir
de ce qui précède, nous avons terminé. Ce calcul est effectué dans la section
2.4.2, après avoir décrit un type d’intersections de cappings avec ∆ dont la
transversalité est garantie. Donnée la propriété de Hofer lipschitzianité des
invariants spectraux, on arrive à montrer que le nombre d’intersection calculé
(à une constante multipicative près) borne du bas la norme d’Hofer de φ.

Une filtration en enlacements Le contenu de cette section fait l’objet du
chapitre 3.

Considérons un difféomorphisme hamiltonien à support compact φ de R2.
Soit H un hamiltonien quelconque qui le génère. Tout difféomorphisme de ce
type admet une fonction génératrice

h : R2 × Rk → R

qui est quadratique à l’infini. Après perturbation de la fonction génératrice,
pour un g générique proche de la métrique standard sur R2 × Rk, le complexe
de Morse CM(h, g;Z) est défini. Les générateurs du complexe de Morse étant
des points critiques de h, ils sont en bijection avec l’ensemble des points fixes
de φ. On sait que l’homologie de ce complexe est isomorphe à l’homologie
du complexe de Floer CM(H,J ;Z) de φ, défini pour un choix générique de
structure presque complexe J . Le complexe de Floer est engendré par les points
fixes de φ, et sa différentielle est définie en comptant les cylindres

u : R× S1 → R2

qui satisfont l’équation de Floer

∂su+ J(∂tu−XH(u)) = 0

C’est un fait classique que le graphe de u,

u : R× S1 → R× S1 × R2

est pseudo-holomorphe, et il est aussi connu que les courbes pseudo-holomorphes
dans les 4-variétés s’intersectent positivement. Considérons maintenant quatre
points fixes distincts x±, y± de φ tels qu’il existe deux cylindres de Floer, u et
v, asymptotiques à ces générateurs du complexe :

lim
s→±∞

u(s, ·) = x±, lim
s→±∞

v(s, ·) = y±
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En considérant la paire de cylindres (u, v) comme une homotopie de la tresse
(x−, y−) vers la tresse (x+, y+), et en utilisant la positivité des intersections de
courbes holomorphes, nous en concluons que

lk(x−, y−) ≤ lk(x+, y+)

Il est possible d’obtenir un résultat similaire en utilisant des fonctions génératri-
ces : Patrice Le Calvez dans [44] le prouve en décomposant φ comme un produit
d’applications déviants la verticale, et en construisant une fonction génératrice
pour laquelle le nombre d’enlacement entre les orbites a une propriété de Lya-
punov. En utilisant ceci et une décomposition subordonnée de R2×Rk (toujours
définie dans [44]), nous pouvons prouver ce qui suit :

Theorem 0.4.2. Soit φ un difféomorphisme hamiltonien du plan à support
compact avec sa forme symplectique standard dx∧dy. Alors, pour toute fonction
génératrice quadratique à l’infini S : R2 × Rk → R pour φ, il existe une forme
quadratique non dégénérée Q sur Rl, une métrique riemannienne g sur R2+k+l

telle que la paire (S ⊕Q, g) est à la fois de Palais-Smale et de Morse-Smale, et
rendant (une extension de) la fonction

I : CM(S ⊕Q, g;Z)⊗ CM(S ⊕Q, g;Z) → Z,

I(p⊗ q) :=

{
1
2 lk(γx, γy) p ̸= q

−
⌈
CZ(γp)

2

⌉
p = q

une filtration croissante du complexe produit tensoriel.

Le nombre CZ(γp) du théorème est l’indice de Conley-Zehnder de γp, qui
coïncide, à translation près, avec l’indice de Morse de p. Le facteur multiplicatif
de 1

2 apparaît à cause de notre normalisation du nombre d’enlacement.
La preuve du théorème est divisée en deux parties : nous montrons l’existence

de cette filtration pour les fonctions génératrices de type Le Calvez, puis nous
la poussons en avant à toute autre fonction génératrice.

La preuve sur les fonctions génératrices définies par Calvez repose sur la pro-
priété de Lyapunov déjà annoncée pour le nombre d’enlacement, et sur l’étude
de l’asymptotique des différentes lignes de gradient γ1, γ2 approchant le même
point critique x. Il existe en fait une interaction entre la décomposition subor-
donnée en x et les enlacements asymptotiques des courbes représentées par les
points γ1(t) et γ2(t) pour t ≫ 0 (il n’est pas clair pour les fonctions génératri-
ces générales comment les points du fibré vectoriel R2 × Rk sont associés à des
lacets dans R2, mais la construction utilisée par Le Calvez rend cette relation
évidente).

Une fois que nous avons obtenu l’existence de la filtration pour une fonction
génératrice de Le Calvez, nous l’étendons à des fonctions génératrices arbitraires
en utilisant le théorème d’unicité de Viterbo [73], [69]. Pour l’appliquer, nous
devons montrer que celles définies par Le Calvez sont des fonctions génératrices
quadratiques à l’infini au sens classique, à une équivalence de jauge près : c’est
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l’une des trois opérations élémentaires sur les fonctions génératrices définies par
Viterbo, et elle induit un isomorphisme des complexes de Morse. Les filtrations
peuvent aussi être poussées en avant le long de ces opérations élémentaires, de
sorte qu’une application du théorème d’unicité prouve le résultat principal.

Nous prouvons un théorème folklorique sur la relation entre la métrique de
Hofer sur Hamc(R2) et la norme C 0 des fonctions génératrices. Si deux dif-
féomorphismes φ,ψ sont proches au sens d’Hofer, alors il existe deux fonctions
génératrices, une pour φ et une pour ψ, qui sont proches pour la norme C 0

: c’est le contenu du lemme 3.4.5. Nous montrons aussi que la filtration I
définie ci-dessus augmente le long des applications de continuation entre fonc-
tions génératrices. Avec ces éléments, nous pouvons prouver un cas simple de [3,
Théorème 2] : pour des perturbations Hofer-petites, les enlacements desorbites
persistent (voir Proposition 3.4.6).

Revenons maintenant au point de vue de la théorie de Floer : soit φ un dif-
féomorphisme hamiltonien d’une surface fermée orientée Σg de genre ≥ 1 ou de
R2 (dans ce cas, nous supposons également que φ est compactement supporté).
Nous désignons par Σ la surface sur laquelle φ est défini. Certains résultats clas-
siques de Hofer, Wysocki et Zehnder [31] montrent que, près des points critiques
de la fonctionnelle d’action de φ, il existe un analogue en dimension infinie de la
décomposition subordonnée définie par Le Calvez. Choisissons un point fixe x
de φ. Ils montrent, pour commencer, que chaque fonction propre de l’opérateur
de Floer linéarisé en x possède un nombre d’enlacement bien défini par rapport
à x lui-même. Si deux fonctions propres différentes partagent la même valeur
propre, alors elles ont le même nombre d’enlacement avec x. Pour chaque en-
tier n, l’espace des fonctions propres ayant un nombre d’enlacement n avec x
est de dimension 2, et la fonction qui associe à une valeur propre le nombre
d’enlacement correspondant est monotone croissante.

Comme dans le cas Morse, un cylindre

u : R× S1 → Σ

négativement (resp. positivement) asymptotique à un point fixe x peut être
localement représenté par une somme de fonctions propres aux valeurs propres
positives (resp. négatives), et par les faits ci-dessus sur les fonctions propres et
leur nombres d’enlacement, il y a des bornes a priori sur le nombre d’enlacement
entre les courbes

us : S1 → Σ, t 7→ u(s, t) et x : S1 → Σ, t 7→ x(t)

pour s→ −∞ (resp. s→ +∞). Ces bornes sont utilisées pour définir le produit
de Siefring entre cylindres de Floer, et sa positivité nous donne l’analogue de
Floer du résultat principal que nous avons dans le cadre de Morse :

Theorem 0.4.3. Soit φ ∈ Ham(Σ) (à support compact si Σ = R2) non dégénéré
(si φ est à support compact, nous exigeons seulement la non dégénérescence
à l’intérieur du support) et généré par un hamiltonien H. Alors, pour une
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structure presque complexe générique J , nous avons une filtration croissante I
sur

CM(H,J ;Z)⊗ CM(H,J ;Z)

définie sur les générateurs par

I(x⊗ y) :=

{
1
2 lk(x, y) x ̸= y

−
⌈
CZ(x)

2

⌉
x = y

Nous voyons immédiatement que les filtrations obtenues par les méthodes
théoriques de Floer et de Morse coïncident, ce qui n’est peut-être pas surprenant.

Nous terminons le chapitre 3 en étudiant le comportement de la filtration
I par rapport au produit paire de pantalons sur l’homologie de Floer. Nous
définissons la paire de pantalons avec p+ 1 jambes

Sp := S2 \ {a1, . . . , ap+1} avec i ̸= j ⇒ ai ̸= aj

comme la sphère bidimensionnelle avec p + 1 piqûres, dont une positive et les
restantes p négatives. Le produit paire de pantalons est une fonction

Pp : CF (H,J ;Z)⊗p → CF (H#p, J ;Z)

qui à p points fixes de φ associe un point fixe de φp. Remarquons que CF (H#p, J ;Z)⊗2

peut être equippé de la filtration I comme ci-dessus, tandis que nous pouvons
définir une filtration Ip sur l’espace source de Pp:

Ip((x
1
1 ⊗ x1p)⊗ (x21 ⊗ x2p)) :=

p∑
j=1

I(x1j ⊗ x2j )

L’opération Pp est définie en comptant les courbes

u : Sp → Σ

qui sont pseudo-holomorphes loin des piqûres, et qui vont satisfaire l’équation
de Floer près d’elles. Leurs graphes

ū : Sp → Sp × Σ

dans ce cas aussi s’avèrent être pseudo-holomorphe. Notre but est de montrer
ce qui suit.

Theorem 0.4.4. Pour x11, . . . , x1p, x21, . . . , x2p points fixes de φ, on a

Ip((x
1
1 ⊗ · · · ⊗ x1p)⊗ (x21 ⊗ · · · ⊗ x2p)) ≤ I(Pp(x11 ⊗ · · · ⊗ x1p)⊗Pp(x21 ⊗ · · · ⊗ x2p))

Pour prouver ce théorème, nous sommes amenés à calculer des produits
d’intersection à la Siefring ū ∗ v̄ entre les graphes des paires de pantalons u, v
impliqués dans la définition de Pp. Nous devons distinguer deux possibilités :
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soit u = v, soit u ̸= v. Le premier cas est très simple à traiter : un simple calcul
de degré suffit, car I et Ip sont des fonctions des indices de Conley-Zehnder des
points fixes x11, . . . , x1p, x21, . . . , x2p. Dans l’autre cas, il s’avère que ū ∗ v̄ borne
par le bas la différence

Ip((x
1
1 ⊗ · · · ⊗ x1p)⊗ (x21 ⊗ · · · ⊗ x2p))− I(Pp(x11 ⊗ · · · ⊗ x1p)⊗Pp(x21 ⊗ · · · ⊗ x2p))

de sorte qu’il suffit de prouver ū∗v̄ ≥ 0. La pseudo-holomorphie suffit à conclure
cela, et prouve le théorème.
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Chapter 1

Preliminaries

In this Chapter the reader will find a description of those notions that seem
necessary to the understanding of this text. The Chapter is divided essentially
in two parts: in the first we present braid groups for surfaces, and in the second
one we talk about Hamiltonian diffeomorphisms, the geometry of Ham and the
Floer homologies we use to approach their study.

1.1 Braid groups
Braid groups are classical objects in group theory. Typical references on the
subject include the book [37] and the paper [28]. The name of the group was
coined by Emil Artin in [6], where he gave an abstract definition in terms of
generators and relations: for k ≥ 2,

Bk =

〈
σ1, . . . , σk−1

∣∣∣∣∣ |i− j| > 1 ⇒σiσj = σjσi

1 ⩽ i ⩽ k − 2 ⇒σiσi+1σi = σi+1σiσi+1

〉
(1.1)

There are more geometrical ways of seeing the braid groups, the one we are
going to use in the present paper being the following one. The permutation
group on k letters Sk admits a faithful action on the complement in Dk of the
set

∆̃ =
{
(x1, . . . , xk) ∈ Dk|∃i ̸= j, xi = xj

}
and we call the quotient

Confk(D) := (Dk \ ∆̃)/Sk

the configuration space of k unordered points of the disc. It turns out that
π1(Conf k(D)) = Bk. This means essentially that after choosing k base points
p1, . . . , pk on D, one can define an element of Bk uniquely as the homotopy class
of a path γ : [0, 1] → Dk \ ∆̃ such that there is σ ∈ Sk verifying γ(1) = σγ(0),
and that any braid may be realised this way. The multiplication in Bk then
corresponds to concatenation of braids the obvious way.

1
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There is a quotient homomorphism Bk → Sk, mapping positive and negative
generators to the same transposition, or equivalently identifying σi with σ−1

i .
Its kernel is called Pk, the set of pure braids. One can visualise pure braids as
braids such that, following the strands, bring each basepoint on itself.

In the following sections of this work we shall need the definition of linking
number1

lk : Bk → Z

which is the only morphism of groups whose value on all the generators σi is
1. Remark that this convention, very natural from the algebraic viewpoint,
requires a different normalisation from the standard one in topology: choosing
basepoints 0 and 1

2 in D, the braid represented by t 7→ [0, 12 exp (2πit)] has
linking number 2 according to our definition, while it is customarily used as
example of loop with linking number 1 in geometric settings.

Another possible definition for the linking number, which only applies to pure
braids, is the following (see [19] for a deeper explanation, including the case of
capped braids). Consider a lift to Dk pure braid with k strands b = [γ1, . . . , γk],
be it b̃, and take any homotopy

h = (h1, . . . , hk) : [0, 1]× [0, 1] → Dk

starting at the trivial braid at the basepoints (each strand is constant there)
and ending in b̃. One can prove that

lk(b) =
∑
i ̸=j

(hi ⋔ hj) (1.2)

where on the right we count intersections with signs.

Remark 1.1.1. Each transverse intersection in the count corresponds to a link-
ing difference of 2, due to our normalisation lk(σj) = 1. With the more usual
convention general one considers the sum indexed on i < j or divides the sum
above by 2.

By homotopy invariance of the intersection product, this quantity does not
depend on the choice of (hi); two different lifts of b being connected by a permu-
tation of the strands, this definition does not depend on the choice of b̃ either.
The linking number then quantifies how far a braid is from being trivial some-
how, quantifying the failure of any homotopy h as above to be a homotopy
between the trivial braid to b̃ through braids.

One may of course define the braid group for any compact, oriented surface
with boundary2 Σg,p. Geometrically speaking, the braid group Bn,g,p can be
seen as the fundamental group of the n-configuration space of the surface Σg,p:

Bn,g,p := π1 (Conf
n(Σg,p))

1In the low-dimensional topology literature it may also be called “exponent”.
2The version for non orientable surfaces also exists, but it is not relevant here.
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If g ≥ 1, p ≥ 1, the presentation in 1.1 gets substantially more complicated.
We are going to report here the results we need from [10]. Let us fix n distinct
base points on Σg,p. There exist then four families of generators (for a picture,
see Figure 1.1):

• σ1, . . . , σn−1: they correspond to the generators of Bn,0,1 ⊂ Bn,g,p, i.e. to
half-twist swapping two of the base points, in such a way that the images
of the paths are contained in a disc on the surface;

• a1, . . . , ag, b1, . . . , bg: they are obtained by homologically independent
loops based at the first base point, P1 (the other base points are instead
fixed throughout the path). One way to describe them is seeing Σg,p as
the connected sum of g tori with p punctures, so that the loops ai and bi
represent the generators of the homology of the i-th torus;

• z1, . . . , zp−1: they correspond to loops based at P1 and winding around
the i − th puncture exactly once (here as well the other base points are
fixed). Remark that there are p − 1 generators, but p punctures. A loop
around the last puncture may in fact be written as composition of the
others.

The relations in this group are rather complex, and we are not going to
report them here to keep the presentation lean. The interested reader will find
a detailed account in [10, Theorem 1.1].

1.2 Symplectic manifolds and associated groups
We recall here some basic definition in Symplectic Topology. We do assume
basic knowledge in differential geometry.

Definition 1.2.1 (Symplectic manifold). A smooth manifold M is said to be
symplectic if there exists a de Rham 2-form ω which is closed and non degener-
ate. A symplectic manifold (M,ω) is exact if ω is exact.

Basic examples of symplectic manifolds are R2 with the form dx ∧ dy, any
cotangent bundle π : T ∗Q→ Q with its tautological symplectic form

ωstd = dλ, λ(q,p)(v) := p(d(q,p)π.v)

and any compact, oriented surface Σg,p of genus g and p boundary components,
with its area form.

In the category of symplectic manifolds, the morphisms are diffeomorphisms
that preserve the symplectic structure.

Definition 1.2.2 (Symplectomorphism). Let (M0, ω0), (M1, ω1) be a symplectic
manifold. A diffeomorphism

φ : (M0, ω0) → (M1, ω1)

is said to be a symplectomorphism if φ∗ω1 = ω0.
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P1 PnP1 Pj+1

PnPj

αi

βi αi

βi

ζ1 ζp

αi

βi αi

βi

ζ1 ζp

αi

βi αi

βi

ζ1 ζp

P1

Pj

Pj+1

Pn P1

Pj
Pj+1

Pn
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βi αi

βi

ζ1 ζp ζl

Figure 1.1: The generators of the braid group Bn,g,p. In clockwise order, starting
from top-left: σj , ai, zl and bi . We draw a fundamental domain of the surface,
and all base points which are not endpoints of the green paths are to be thought
of as constant paths.
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The symplectomorphisms of a symplectic manifold (M,ω) form a group, de-
noted by Symp(M,ω). If we require the symplectomorphisms to be the identity
outside a compact set of M , we talk about compactly-supported symplectomor-
phism. They also form a group, which we denote by Sympc(M,ω). We will
drop the symplectic form whenever it is clear from context, or irrelevant.

A remarkable subgroup of Symp(M) is that of Hamiltonian diffeomorphisms.
To introduce it, we have to define Hamiltonian vector fields first.

Definition 1.2.3. Let (M,ω) be symplectic. Let H ∈ C∞(S1t ×M ;R). The
Hamiltonian vector field associated to H, which we call XH , is defined by the
equation:

ω(XHt
, ·) = −dHt

The function H is called the Hamiltonian of XH .

If the manifold M is not compact, we assume by default that all our Hamil-
tonians are null outside of a compact set: this makes the flow of XH complete.
We make a similar assumption if the manifold has boundary: we assume that
the Hamiltonians are null outside of a compact set of the interior of the manifold
(equivalently, they are null in a neighbourhood of the boundary).

Definition 1.2.4. A diffeomorphism φ ∈ Diff(M) is Hamiltonian if there exists
a function H as above such that φ is the time 1-map of XH , denoted ϕ1H . The
diffeomorphism φ is called autonomous if the Hamiltonian may be assumed to
be time-independent.

As anticipated above, every Hamiltonian diffeomorphism is symplectic. We
denote by Ham(M,ω) the group of Hamiltonian diffeomorphisms of (M,ω). If
M is non compact, our Hamiltonian diffeomorphisms will be compactly sup-
ported and the group denoted Hamc(M,ω). It will still be a normal subgroup
of Sympc(M,ω). Given our conventions, we shall write Hamc(M) throughout
the present text, regardless of whether M is compact or not.

Given φ ∈ Hamc(M), a Hamiltonian isotopy is a path in Hamc(M) connect-
ing the identity to φ. Any Hamiltonian H generating φ gives an isotopy to φ:
the Hamiltonian flow

t 7→ ϕtH

Remark 1.2.5. It is implicit in the discussion above that our Hamiltonian
isotopies are always compactly supported.

There are several possible group norms on Hamc(M). Here we are going to
focus on the so-called Hofer norm. Given a compactly supported Hamiltonian
H, we define its oscillation to be

∥H∥ =

∫ 1

0

(
max
x∈M

Ht(x)− min
x∈M

Ht(x)

)
dt

and the Hofer norm of a compactly supported Hamiltonian diffeomorphism by

∥φ∥ = inf
H,φ=ϕ1

H

∥H∥
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We define the Hofer distance between two Hamiltonian diffeomorphisms in
a bi-invariant way:

dH(φ,ψ) := ∥φψ−1∥

nondegeneracy of the Hofer distance is non trivial to show: it was proved
in various degrees of generality in [30], [58], [42]. The Hofer norm retains non
trivial dynamical information: see just as an example the results in [59] and [3].
A flourishing domain of study is also that of the large scale geometry of the
Hofer norm: see for instance [20], [60] and references therein.

Remark 1.2.6. It is in general complicated to find Hamiltonian diffeomor-
phisms with large Hofer norm. Known examples yield the following heuristics:
in order to have large Hofer norm, a diffeomorphism should “move around big
open sets in a complicated manner”. The main result of Chapter 2 should be
seen as a confirmation of these heuristics in a specific context.

One of the main tools for the study of the Hofer metric on Ham are quasi-
morphisms, introduced in the field of Symplectic Topology in [22].

Definition 1.2.7. A quasimorphism on a group G (in our case G = Hamc(D, ω))
is a function Q : G → R such that there is a constant D ≥ 0, the defect of the
quasimorphism, verifying for all g, h ∈ G

|Q(gh)−Q(g)−Q(h)| ≤ D

A quasimorphism is said to be homogeneous if it is a homomorphism when
restricted to powers of the same element: ∀g ∈ G,∀k ∈ Z, Q(gk) = kQ(g).
Given any arbitrary quasimorphism Q, we define its homogenisation by

Q̃(x) := lim
n→∞

Q(xn)

n

Homogeneous quasimorphisms may be used to study properties of Hamil-
tonian diffeomorphism groups with respect to the Hofer metric when they are
Hofer-Lipschitz. The research for and the study of Hofer-Lipschitz quasimor-
phisms has now a long history and a wide plethora of applications: some can
for instance be found in [21] [22], [23], [38] [40], [61], and several others. The
research for quasimorphisms on Hamc(M,ω) may be justified by the simplicity
theorem of Banyaga [8] (see also [9] and [49]): for a closed manifold Ham is sim-
ple, so that it does not admit any non trivial homomorphism (kernels are normal
subgroups). If however M2n is an open manifold with symplectic form ω = dλ
(for us M = D with its standard structure) there’s a natural homomorphism on
Hamc(M,ω):

Cal : Hamc(M,ω) → D, ϕ1H →
∫
M

Hωn

The morphism Cal will appear in the Appendix B as a part of definitions of new
quasimorphisms.

We conclude our introduction to the group of Hamiltonian diffeomorphism
with a classical result on surfaces. We write it down as a reference, since we
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could not find one elsewhere. It is contained in a joint work with Ibrahim Trifa
[52], and it makes use of results of Gramain’s, Moser’s and Banyaga’s which we
are not going to introduce here as they are not required anywhere else.

Lemma 1.2.8. If Σg,p ̸= S2, Hamc(Σg,p) is simply connected.

Proof. Let B = ∂Σg,p: it is a disjoint union of p circles. The embedding B ↪→
Σg,p provides a fibration

Diff0(Σg,p, B) ↪→ Diff0(Σg,p) → Diff0(B) (1.3)

where the fibre is the group of diffeomorphisms of Σg,p inducing the identity
on the boundary and isotopic to the identity, the total space is the connected
component of the identity of the diffeomorphisms of Σg,p, and the base is the
connected component of the identity in the group of diffeomorphisms of a disjoint
union of circles.

Let us consider the long exact sequence of the fibration in (1.3):

π2(Diff0(B)) → π1(Diff0(Σg,p, B)) → π1(Diff0(Σg,p)) → π1(Diff0(B)) (1.4)

The term π2(Diff0(B)) is always 0, since it is a power of π2(Diff0(S1)) and this
is trivial (Diff0(S1) has the homotopy type of the circle itself). This proves that
the second arrow in the exact sequence (1.4) is always an injection. Now, if
g > 1 or g = 0, p ≥ 3, [29, Theorem 1] shows that Diff0(Σg,p) is contractible: in
such a case we deduce that π1(Diff0(Σg,p, B)) = 0. We want to prove that in
this case Diff0(Σg,p, B) and Hamc(Σg,p) have isomorphic fundamental groups.

Let Symp0(Σg,p, B) be the group of symplectic diffeomorphisms of Σg,p in-
ducing the identity on the boundary and isotopic to the identity through sym-
plectic diffeomorphisms with the same property. By [7] (generalising a result
of Moser [53]) Symp0(Σg,p, B) is a deformation retract of Diff0(Σg,p, B), and in
particular

π1(Symp0(Σg,p, B)) ∼= π1(Diff0(Σg,p, B))

Fix a decreasing sequence of open collar neighbourhoods of the boundary, call
them (Un)n≥1: they satisfy the property⋂

n≥1

Un = B (1.5)

Define by SympUn
(Σg,p) the group of symplectic diffeomorphisms of Σg,p which

are supported in Σg,p \ Un and are isotopic to the identity via such diffeomor-
phisms.

Clearly,

SympUn
(Σg,p) ⊂ SympUn+1

(Σg,p),
⋃
n≥1

SympUn
(Σg,p) = Sympc(Σg,p) (1.6)

and both these conditions together imply that

π1(Sympc(Σg,p)) = lim
n
π1(SympUn

(Σg,p)) (1.7)
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We are now going to prove that π1(Sympc(Σg,p)) injects into π1(Symp0(Σg,p, B)) =
0 via the map induced by the inclusion. This will in turn imply that π1(Hamc(Σg,p)) =
0, since the map:

π1(Hamc(Σg,p)) → π1(Sympc(Σg,p))

induced by the inclusion is in fact an injection (see [49, Proposition 10.2.13]).
Let therefore t 7→ φt ∈ Sympc(Σg,p) be a loop based at the identity which

becomes contractible once seen as a representative in π1(Symp0(Σg,p, B)). There
is therefore a homotopy of symplectic isotopies fixing the boundary pointwise
shrinking t 7→ φt to the constant path at the identity:

ψ : [0, 1]s × [0, 1]t → Symp0(Σg,p, B),

ψ(0, t) = φt, ψ(1, t) = Id, ψ(s, 0) = ψ(s, 1) = Id

The goal now is to modify this isotopy to a new one, in area-preserving
diffeomorphisms which fix a small enough collar neighbourhood of the boundary.
Since the support of φt is compact in Σg,p \ B for all t, there exists an n big
enough such that the support of φt is contained in Σg,p \ Un for all t.

Since we know that Symp0(Σg,p, B) is a deformation retract of Diff0(Σg,p, B),
we may homotope ψ to another homotopy ψ′, this time via diffeomorphisms fix-
ing Un pointwise (but not necessarily area-preserving), from the identity to itself.
We now consider ψ′ as a homotopy in diffeomorphisms of Σg,p \ Un: applying
Moser’s result again we find a homotopy in SympUn

(Σg,p), call it ψ′′, between
the symplectic loop t 7→ φt and the constant loop. Since SympUn

(Σg,p) ⊂
Sympc(Σg,p), the existence of ψ′′ proves that we have a sequence of group mor-
phisms

π1(Hamc(Σg,p)) ↪→ π1(Sympc(Σg,p)) ↪→ π1(Symp0(Σg,p, B)) ∼= π1(Diff0(Σg,p, B))

and the rightmost group is 0 whenever g > 1 or g = 0, p ≥ 3 by Gramain’s
result. We have thus proved that Hamc(Σg,p) is simply connected under the
above topological assumptions.

We are now left with the cases of the disc D and cylinder Z to consider. In
these two cases [29] shows that

Diff0(D, ∂D) ∼ Diff0(Z, ∂Z) ∼ SO(2,R)

where ∼ denotes homotopy equivalence, the diffeomorphisms induce the identity
on the boundary, and O(2,R) is the real orthogonal group of rank 2. Let us
again adopt the notation from above: Σg,p is our surface (disc or cylinder), and
B its boundary. We have again an exact sequence

0 → π1(Diff0(Σg,p, B)) → π1(Diff0(Σg,p)) → π1(Diff0(B))

but here the third group is not trivial. We need thus to show that the image of
the second arrow is 0.
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If Σg,p = D, then SO2(R) is a subgroup of Diff0(Σg,p), and is in fact its
deformation retract. A generator of π1(SO2(R)) is given by a full rotation, which
is mapped to the generator of π1(Diff0(∂D)): the third arrow is an injection in
the case of the disc, so that the map

π1(Diff0(Σg,p, B)) → π1(Diff0(Σg,p))

from above is 0 as claimed.
If we examine Σ0,2 = Z instead, the argument is similar: the generator

of π1(Diff0(Z)) is the full rotation, which is mapped to a nonzero element in
π1(Diff0(∂Z)) (not a generator in this case, of course). The third arrow is an
injection in this case as well.

Summing up, in the cases g = 0, p ∈ {1, 2} we still have π1(Diff0(Σg,p, B)) =
0. The rest of the arguments above did not depend on the actual surface we
worked on, and they carry over to this context: we infer that

π1(Hamc(D)) ∼= π1(Hamc(Z)) = 0

Almost complex structures Symplectic manifolds always admit almost
complex structures. They are going to be used in the following sections to
describe the construction of Floer theories.

Definition 1.2.9. Given a manifold M , an almost complex structure J on M
is an endomorphism of its tangent bundle such that J2 = −Id.

The standard complex structure on C

z 7→
√
−1z

is the most basic example of almost complex structure.
The set of almost complex structure is contractible, like the set of tame and

compatible almost complex structures, whose definitions now follow.

Definition 1.2.10. Let (M,ω) be a symplectic manifold. An almost complex
structure J is said to be ω-tame if

∀x ∈M, ∀v ∈ TxM \ {0}, ω(v, Jv) > 0

The almost complex structure J is said to be ω-compatible if furthermore J is a
symplectic transformation:

ω(J ·, J ·) = ω

Lagrangian submanifolds Lagrangian submanifolds are maximal isotropic
manifolds, and they exhibit strong rigidity properties when deformed by Hamil-
tonian diffeomorphisms.
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Definition 1.2.11. A submanifold (L, ι : L → M) of a symplectic manifold
(M,ω) is said to be Lagrangian if

ι∗ω = 0 and 2 dimL = dimM

A Lagrangian (L, ι) in an exact symplectic manifold (M,ω = dλ) is said to be
exact if there exists

fL ∈ C∞(L;R) with dfL = ι∗λ

Simple examples of exact Lagrangians are graphs of differentials in cotangent
bundles.

1.3 Hamiltonian Dynamics and Variational Prin-
ciples

In this section we are going to describe the theories we apply in the text. We
start by giving some elementary definitions, proceed then with a paragraph
more historical in nature, which we use to introduce the notion of Hamiltonian
twist maps on surfaces. With this in our hands, we describe the classical the-
ory of generating functions in cotangent bundle, which may be used to describe
Hamiltonian diffeomorphisms. After that we move to the Floer side: we sketch
the construction of Quantitative Heegaard-Floer homology and the associated
spectral invariants following [21], and to finish we talk about Hamiltonian Floer
Homology, its product operations and the Siefring product for punctures holo-
morphic curves in symplectic cobordisms.

Let φ be a Hamiltonian diffeomorphism of a symplectic manifold (M,ω).

Definition 1.3.1. A point x ∈ M is a fixed point of φ if φ(x) = x. In such
a case, we write x ∈ Fix(φ). A fixed point is contractible if, for any choice of
path in Hamc(M) between the identity and φ, the loop t 7→ φt(x) is contractible.
This notion does not depend on the isotopy one considers.

An iterated of φ is simply a power φk, for an integer k > 0. By definition,
φ0 = IdM . There is a composition formula for Hamiltonian functions: if H and
K are Hamiltonians on M generating respectively φ and ψ, the function

H#K(t, x) := H(t, x) +K(t, (φt)−1x)

generates φ ◦ ψ. In fact, more is true: it generates the isotopy

t 7→ ϕtH ◦ ϕtK

Definition 1.3.2. A periodic point x of φ is a fixed point of an iterate. The
period k of x is

min
{
k ∈ N>0|x ∈ Fix(φk)

}
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For the next definition, remark that given x ∈ Fix(φ), dxφ is an endomor-
phism of TxM .

Definition 1.3.3. A fixed point x is non degenerate if 1 is not an eigenvalue
of dxφ. A Hamiltonian diffeomorphism is non degenerate if every x ∈ Fix(φ) is
non degenerate.

It is possible to show that non degenerate critical points are isolated.

Remark 1.3.4. Our Hamiltonian diffeomorphisms of R2 will always be com-
pactly supported, and as such cannot be non degenerate in the above sense.
When we say that φ ∈ Hamc(R2) is non degenerate, we mean that all critical
points in the interior of the support of φ are non degenerate. If our goal is to
define a Floer theory for φ, we perturb a generating Hamiltonian by a summand
which outside of a compact set is a small affine function of the radius. When
necessary then we tacitly assume to fix a perturbation of a compactly supported
Hamiltonian diffeomorphism.

Without giving a proper definition for it, we introduce the Conley-Zehnder
index. Let x ∈ Fix(φ) be non degenerate: the integer denoted by CZ(x) is its
Conley-Zehnder index. It essentially quantifies how the infinitesimal flow twists
a symplectic frame of reference at the fixed point during a Hamiltonian isotopy.
Accurate definitions may for instance be found in [18], but see [63] for a more
general case. The definition of the index however already appears in [27].

1.3.1 Poincaré-Birkhoff theorem and Arnol’d conjecture

The content of this section is classical: a good introductory reference may be
found for instance in [65]. Before stating the famous Poincaré-Birkhoff Theorem,
we have to introduce a remarkable class of diffeomorphisms of the plane:

Definition 1.3.5. Let ϕ : R2 → R2 be an orientation-preserving diffeomor-
phism. We say that ϕ is a twist map if, denoting ϕ(x0, y0) = (x1, y1), we have
the inequality

∂x1
∂y0

> 0

Geometrically, this may be visualised as follows: given any vertical line
of constant x coordinate, it is sent to the graph of a strictly increasing func-
tion. The definition may be extended to diffeomorphisms realising the inequality
∂x1

∂y0
< 0, in which case vertical lines are mapped to graphs of strictly decreasing

functions.

Remark 1.3.6. This interpretation justifies the French denomination of twist
maps: they are called applications déviant la verticale, literally “functions de-
viating the vertical”. The vertical will be deviated à droite (“to the right”) or à
gauche (“to the left”) in respectively the first and second case.
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Example. The prototypical example of a twist map is the Dehn twist

D : (x, y) 7→ (x+ y, y)

It is apparent that such a diffeomorphism is a twist map (and in fact it is déviant
la verticale à droite). The clockwise rotation

R : (x, y) 7→ (y,−x)

is also a twist map, again à droite.

Let us now moreover assume that the twist map ϕ is symplectic. In such
a case, there exists what is called a generating function for ϕ: it is a map
h : R2 → R such that

∀(x, y), (x′, y′) ∈ R2, ϕ(x, y) = (x′, y′) ⇔

{
y = −∂1h(x, x′)
y′ = ∂2h(x, x

′)
(1.8)

Example. An example of generating function for the Dehn twist above is

R× R → R, (x, x′) 7→ 1

2
(x′ − x)2 (1.9)

while the clockwise rotation is generated by

R× R → R, (x, x′) 7→ −xx′ (1.10)

Generating functions make their entrance in the picture in the proof of
Poincaré-Birkhoff Theorem. Before stating it, we extend the definition of twist
map to the annulus: ϕ : S1 × (a, b) → S1 × (a, b) is a twist map if on top of the
conditions above (being orientation preserving and satisfying the inequality on
the derivatives) it preserves the two boundary components of the annulus, and
is moreover a rotation there.

On an annulus to a periodic point x of ϕ of period p ≥ 1 one may associate
a rotation number q

p . The number q ∈ Z is the degree of the composition
t 7→ γ(t) = (γ1(t), γ2(t)) 7→ γ1(t). In this definition, γ(t) is a Hamiltonian
path in S1 × (a, b) of length p for ϕ such that γ(0) = γ(p) = x, and γi are its
projections onto the two factors of the annulus.

Poincaré-Birkhoff Theorem, in its original statement, therefore reads:

Theorem 1.3.7 (Poincaré-Birkhoff). Let ϕ be a twist map of the annulus, and
θ1, θ2 ∈ R be the rotation angles of the two boundary components. Assume that
θ1 < 0, θ2 > 0. Then, if q

p ∈ (θ1, θ2) is rational, there exists a pair of p-periodic
points of ϕ with rotation number q

p .

The proof is in fact given by an application of Weierstrass theorem. We first
consider a lift of the problem to the universal cover of the annulus, R× (a, b): a
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q
p -periodic point of ϕ is then a point x = (x1, x2) such that ϕp(x) = (x1+ q, x2).
We then apply Weierstrass theorem to the function

H(ξ0, . . . , ξp−1) =

p−1∑
i=1

h(ξi, ξi+1)

defined on the compact subspace of R2p given by the constraints

ξ0 ≤ ξ1 ≤ · · · ≤ ξp−1 ≤ ξp = x0 + q

One then has to verify that the global maximum and the global minimum do
not lie on the boundary (this would give rise to a “degenerate orbit”, i.e. an
orbit of lower period). The projection on S1 of the first coordinate ξ0 of the
maximum or the minimum is the first coordinate of a q

p -periodic orbit of ϕ.

Historically, the proof of Poincaré-Birkhoff Theorem and the existence together
with the existence of a second kind of generating functions (explained in the
next section) motivated Arnol’d conjecture, one of the main reasons for the
very existence of the field of Symplectic Topology:

Conjecture 1.3.8 (Arnol’d Conjecture - Hamiltonian version). Let ϕ be a
compactly-supported, non degenerate Hamiltonian diffeomorphism of a symplec-
tic manifold M2n, and let bi be the i-th integral Betti number of M . Then

#(Fix(ϕ)) ≥
2n∑
i=0

bi

There also exists a more general Lagrangian formulation:

Conjecture 1.3.9 (Arnol’d Conjecture - Lagrangian version). Let M2n be a
compact symplectic manifold, and L and embedded Lagrangian submanifold. If
a Hamiltonian diffeomorphism ϕ is such that ϕ(L) ⋔ L, and we denote by bi be
the i-th integral Betti number of L. Then

#(ϕ(L) ∩ L) ≥
n∑
i=0

bi

The Lagrangian Arnol’d conjecture implies the Hamiltonian one in the com-
pact setting: if ϕ ∈ Hamc(M,ω), one may to consider the intersections between
diagonal ∆ (Lagrangian in (M,ω)⊕ (M,−ω)) and the graph of ϕ.

The theories explained in the following sections prove Arnol’d conjecture
under some geometrical hypotheses on the involved manifolds.

1.3.2 Generating functions à la Viterbo
The first construction we would like to introduce is the one of generating func-
tions, used to study Lagrangian intersections in cotangent bundles.

In the following, M is going to be a closed manifold or R2n. Endow T ∗M
with its canonical exact symplectic structure.
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Definition 1.3.10 (Generating functions). Let L ⊂ T ∗M be an exact La-
grangian submanifold. We say that S : E → R is a generating function for
L if:

i) π : E →M is a real vector bundle on M ;

ii) S is vertically transverse to 0. By this we mean that we define the vertical
differential of S, let us denote it by

∂V S : E → (ker dπ)∗

and we ask that ∂V S ⋔ 0.

iii) L is the image of the following Lagrangian immersion. Let ΛS := ∂V S−1(0)
(it is a submanifold of E by previous point), and define the Lagrangian im-
mersion by

ιS : ΛS → T ∗M, (x, ξ) 7→ (x, ∂HS(x, ξ))

In the third point, ∂HS(x, ξ) ∈ T ∗M is defined as

(x, v) 7→ d(x,ξ)S.v
′, for any v′ ∈ T(x,ξ)E, dx,ξπ.v

′ = v

By definition, the critical set of a generating function is in bijection with
the intersection points between such Lagrangian and the zero section of T ∗M ,
so if we want to bound the cardinality of the latter we are naturally lead to
do Morse theory on a generating function. A vector bundle is however never
a compact manifold, so we need to work within a class of generating functions
which satisfy the Palais-Smale compactness condition.

Definition 1.3.11. A generating function S : E → R is said to be quadratic at
infinity (and we shall write GFQI for it) if there exists a function Q : E → R
which when restricted to the fibres is a non degenerate quadratic form, and such
that S −Q is supported on a compact set.

Remark 1.3.12. This definition may in fact be relaxed a bit (see [69]), but we
will not need the extended definition.

Given a GFQI, S, we denote by σ(S) its signature, defined to be the signature
of the quadratic form at infinity (maximal dimension of a subspace on which it
is negative definite).

To answer our intersection-counting question via Morse theory, we need an
existence statement: as of now, we are not sure for what class of Lagrangian
submanifolds one can construct generating functions, if they ever exist at all.

Theorem 1.3.13 (Sikorav ’87 [68]). Let us assume that L ⊂ T ∗M admits a
generating function: then if φ ∈ Ham(T ∗M), so does φ(L).

Remark 1.3.14. It is in fact possible to prove (see [69]) that the map from gen-
erating functions to Lagrangian submanifolds is an infinite dimensional smooth
Serre fibration in a precise sense.
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The set of Lagrangians which admit generating functions is therefore closed
under Hamiltonian isotopies. Since the zero section 0M ⊂ T ∗M is generated by
any non degenerate (fibre-independent) quadratic form, at the very least any
Hamiltonian deformation of the zero section admits a generating function.

For general knowledge, we choose to now state the Nearby Lagrangian Con-
jecture:

Conjecture 1.3.15. Any closed exact Lagrangian in T ∗M is Hamiltonian iso-
topic to the zero section.

Remark 1.3.16. This conjecture is not a Theorem yet.

Existence of a generating function alone however does not guarantee the
possibility of counting intersections by means of Morse theory, as mentioned
above. Moreover, it is not clear how different generating functions for the same
Lagrangian submanifold are related to one another. We introduce then certain
elementary operations using which, given a generating function, we may obtain
new ones for the same Lagrangian submanifold.

Definition 1.3.17. Assume S : E → R is a generating function on π : E →M
for the Lagrangian L ⊂ T ∗M We call the following operations elementary:

(Shift) If c ∈ R, S + c is a new generating function for L, defined again on E;

(Gauge equivalence) If ϕ is a vector bundle automorphism of E,

S ◦ ϕ : E → R

is a new generating function for L, defined on the bundle

π ◦ ϕ : E →M

(Stabilisation) If Q : E′ → M is a non degenerate quadratic form on the vector bundle
π′ : E′ →M , then

S +Q : E ⊕ E′ → R

is a generating function for L, defined on

π ⊕ π′ : E ⊕ E′ →M

Remark 1.3.18. We may, without loss of generality, always assume to be
adding trivial bundles for the (Stabilisation) operation. In fact, if E′ → M
is a vector bundle, there exists another vector bundle on M , say E′′, such that
E′ ⊕ E′′ is trivial. Moreover, it is remarked in [69] that any non degenerate
quadratic form is equivalent diffeomorphic by a gauge equivalence to one which
does not depend on the point of the base, i.e. if the vector bundle E is globally
trivial, and p, q ∈ B, then Q|π−1(p) = Q|π−1(q).

We may now state Viterbo’s Uniqueness Theorem:
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Theorem 1.3.19 (Viterbo, [73]). A Lagrangian submanifold L ⊂ T ∗M is said
to have the GFQI-uniqueness property if, given S : E → R, S′ : E′ → R gener-
ating functions for L, there exist two finite sequences of elementary operations
taking both S and S′ to the same S′′ :M × RN → R, GFQI for L. Then:

i) If L has the GFQI-uniqueness property, and φ ∈ Ham(T ∗M), then so does
φ(L);

ii) The zero section 0M has the GFQI-uniqueness property.

Proof. For a complete proof of the Theorem, see [69].

Remark 1.3.20. If L ⊂ T ∗M is a Lagrangian with admitting a generating
function (its quadraticity at infinity is not necessary) S, S is Morse if and only
if L ⋔ 0M .

Lagrangian Arnol’d conjecture is now proved in the context of Hamiltonian
deformations of the zero section of cotangent bundles.

Generating functions may be used to describe compactly supported Hamilto-
nian diffeomorphisms of (R2n, ω =

∑
i dx

i ∧dyi): denoting by R2n the symplec-
tic manifold (R2n,−ω), if ∆ is the diagonal of R2n ⊕R2n, there is a symplectic
identification

R2n ⊕ R2n → T ∗∆

mapping ∆ to the zero section, given by

(x, y,X, Y ) 7→ (x, Y, y − Y,X − x) (1.11)

We have endowed above T ∗∆ with its tautological exact symplectic form. Given
a Hamiltonian diffeomorphism of R2n with compact support, we push forward
its graph to T ∗∆ by the symplectic identification above. One may then find a
generating function for the Lagrangian deformation of the zero section in T ∗∆
one obtains this way. Fixed points of the Hamiltonian diffeomorphism are in
bijection with the Lagrangian intersections between the zero section and its
deformation, and thus with the critical points of the generating function. Let
φ ∈ Hamc(R2n), and

h : ∆× RNξ → R

a generating function of its graph in T ∗∆. The map in (1.11) yields then the
equivalence

φ(x, y) = (X,Y ) ⇔


∂ξh(X, y; ξ) = 0

X − x = ∂Y h(X, y; ξ)

Y − y = −∂xh(X, y; ξ)
(1.12)

Remark 1.3.21. Let us remark that in principle the kind of generating func-
tions we have just talked about is a different one from the ones earlier in this
Chapter, for twist maps.
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Remark 1.3.22. A diffeomorphism φ ∈ Hamc(R2n) is non degenerate if and
only if for any GFQI S with quadratic form Q that represents it, S−Q is Morse
in the interior of its support.

We now quote a Lemma as reported by Brunella about composition formulas
for GFQI.

Lemma 1.3.23 ([14]). Let L ⊂ T ∗R2n be an immersed Lagrangian submanifold
with a GFQI S : R2n × Rk → R coinciding with Q : Rk → R at infinity. Let
g be a compactly supported Hamiltonian diffeomorphism of R4n with generating
function F : R2n × R2n → R. Then g(L) has a GFQI with fibres of dimension
4n+ k.

This Lemma is proved providing an explicit formula.

Morse theory for GFQI on R2n Trying to define Morse theory for a GFQI
S : R2n × Rk → R of a non degenerate, compactly supported Hamiltonian
diffeomorphism φ ∈ Hamc(R2n) , one immediately runs into the problem that
S is never going to be Morse on the whole of R2n. It is possible to try to define
the whole Morse complex as a limit of complexes of perturbations in a given
family. We are not going to proceed this way, as considering the limit one has
to take the homology first for the continuation maps to be well defined, thus
losing the correspondence generator↔fixed point.

An alternative approach is to fix a single perturbation of S, assuming it
has only finitely many critical points: this is possible for instance making the
hypothesis that the perturbation is radial with respect to the R2n-coordinate at
infinity, without critical points outside a compact set. It is possible to read this
text supposing that all functions be really Morse, and the pairs function-metric
to be both Morse-Smale and Palais-Smale.

We now present an approach that has the advantage of retaining perturbation-
independent information only. It has been inspired by an analogous constrtuc-
tion in [3].

Definition 1.3.24. Let φ ∈ Hamc(R2n), and x ∈ Fix(φ). For a fixed generating
function S of φ, the S-action of x is defined to be the critical value of the critical
point of S corresponding to x. The set of all critical values of S is called the
spectrum of S, and will be denoted by Spec(S).

Remark 1.3.25. For a fixed φ ∈ Hamc(R2n), the spectrum depends on the
generating function we choose up to translation, because of the (Shift) operation.
If we restrict our attention to GFQIs however the spectrum is well defined.

Assume that φ has no non degenerate fixed points of S-action 0. This
condition is generic in Hamc(R2n), as it may be seen using the definition of
action given in Section 1.3.4, which is equivalent to the one above. Perturb
the generating function S as above (we call the perturbation S again). Fix any
a < b with 0 ̸∈ (a, b), or equivalently ab > 0, allowing a = −∞ or b = +∞ when
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possible, and any g making (S, g) both Palais-Smale and Morse-Smale. One can
then define

CMa(S, g;Z) :=
⊕

x∈Crit(S),S(x)<a

Z · x

and similarly CM b(S, g;Z).

Remark 1.3.26. Assume the perturbation of S to be small enough. If a > 0 both
subcomplexes contain the non degenerate critical points obtained from perturbing
the degenerate critical points of 0 S-action. If b < 0, such points do not appear
in either subcomplex.

We then define the Morse complex in the action window (a, b) to be

CM (a,b)(S, g;Z) := CM b(S, g;Z)/CMa(S, g;Z) (1.13)

where the differential counts gradient lines connecting generators. In the text,
whenever we write

CM(S, g;Z)

for a generating function S of a given compactly supported Hamiltonian diffeo-
morphism, we mean the collection(

CM (a,b)(S, g;Z)
)
a<b,0̸∈(a,b)

(1.14)

as defined in (1.13).
We now shift the grading of the complex much like in the work of Traynor

[70] (this operation does not affect what has been done above). Let σ(S) the
signature of a GFQI S. If x ∈ Crit(S) has Morse index k, it is a generator of
CM(S, g;Z) in degree k − σ(S). With this convention, the three elementary
operations of Definition 1.3.17 induce isomorphisms of graded complexes. The
grading shift is clearly needed due to the stabilisation operation, which in general
changes the Morse index.

Continuation maps We now sketch the construction for Morse continuation
maps. Let S0, S1 be GFQI R2n × Rk → R for two compactly supported non
degenerate Hamiltonian diffeomorphisms. Let Q0 and Q1 be the two asymptotic
non degenerate forms, which we may assume to be independent of the base point
x ∈ R2n. We require that the Si be defined on the same space (we did so above
implicitly), and that Q0 = Q1: up to stabilisation they have the same signature,
and then apply a fibre-preserving diffeomorphism taking an orthogonal basis of
one to an orthogonal basis of the other. As highlighted above, S0 and S1 will be
non degenerate only in the interior of the supports of Si − Qi. We ignore this
problem in the exposition, using the above method. Fix Riemannian metrics gi
such that, up to small perturbations, the (Si, gi) are Morse-Smale and Palais-
Smale pairs.

Define the function

S : [0, 1]× R2n × Rk → R, S(t, x) := (1− t)S0(x) + tS1(x)
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and the metric on [0, 1]× R2n × Rk

g(t, x) := (1− t)g0(x) + tg1(x) + dt2

Perturb S so that it has a smooth extension to (−δ, 1 + δ)×R2n+k, for a small
δ > 0. Likewise, extend g on the same set. Define a smooth h : (−δ, 1+ δ) → R
such that for a ε > 0 we have

• h(0) = ∥S0 − S1∥∞ + ε

• h(1) = 0

• h′(t) < 0 for all t ∈ (0, 1)

• 0 is a point of global maximum for h, and 1 one of global minimum.

Remark that such function h may be constructed for an arbitrarily small value
of ε. Then we also may assume that

∀t ∈ (−δ, 1 + δ), |h′(t)| > ∥S1 − S0∥∞ (1.15)

Because of this inequality, studying the Morse complex of

(t, x) 7→ h(t) + S(t, x)

together with the perturbation of the metric g above, one may define a map

CM(S0, g0;Z) → CM(S1, g1;Z)

In fact, (1.15) forces negative gradient lines to connect critical points of S with
t = 0, which are in bijection with critical points of S0, to critical points of S
with t = 1, which are secretly critical points of S1.

The complexes above are defined if the Si are Morse. Otherwise, we are
forced to look at the homology of the complexes CM (a,b)(Si, gi;Z). To describe
continuation maps in this case, we need to be able to describe how the value of
the filtration changes.

Lemma 1.3.27. Let x0 ∈ Crit(S0) be a generator of the Morse complex for
(S0, g0). Assume x1 ∈ Crit(S1) is a generator for the target Morse complex
such that there exists a negative gradient line for (h+ S, g)

γ : R → (−δ, 1 + δ)× R2n+k, γ̇(σ) = −∇g(h+ S)(γ(σ))

negatively asymptotic to (0, x0) and positively asymptotic to (1, x1)

lim
σ→−∞

γ(σ) = (0, x0), lim
σ→+∞

γ(σ) = (1, x1)

Then
S1(x1)− S0(x0) ≤ ∥S0 − S1∥∞ + ε (1.16)

where ε appears in the definition of h.
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Proof. Because γ is a negative gradient line for h+ S, clearly

(h+ S)(1, x1) = (h+ S)(γ(+∞)) ≤ (h+ S)(γ(−∞)) = (h+ S)(0, x0)

By definition therefore

S1(x1)− S0(x0) ≤ h(0)− h(1) = ∥S0 − S1∥∞ + ε

One inconvenient of the definition in (1.14) is that continuation maps get
more complicated to describe, since the chain complex is not defined for all
action values at once. The Lemma above lets us define the continuation maps
for fixed intervals of values of the Morse functions.

Corollary 1.3.28. Let a < b with ab > 0, and write

λ := ∥S0 − S1∥∞

Then, for ε > 0 small enough, the following continuation maps are defined if
(and only if) both ab > 0, (a+ λ)(b+ λ) > 0:

CM (a,b)(S0, g0;Z) → CM (a+λ+ε,b+λ+ε)(S1, g1;Z)

Proof. The action shift is clear by the above Lemma. We only need to be
mindful about the definition of the Morse complex of h + S: we have to show
that as soon as the Morse complexes for the Si above are defined, then so is
the one of h + S. To define the morphism we use the differential of the Morse
complex

CM (a+λ+ε,b+λ+ε)(h+ S, g;Z)

For ε small enough there are no degenerate critical points of h+S in this interval.
Critical points in {0}×R2n+k coincide with critical values of S0 by construction,
but the critical value is increased by λ, so the morphism is indeed defined where
claimed.

In particular this Corollary shows that continuation maps in this framework
may therefore be defined for small C 0-deformations of the generating function
only, the size of which depends on the actual action window (a, b) we start from.

1.3.3 Quantitative Heegaard-Floer Homology

This section is the most technical of the introduction. It will set the notation
and the groundwork for Chapter 2. We use here the conventions from [47].

The tool we shall use is the family of quasimorphisms defined in [21]: we are
going now to sketch their construction, and refer to that paper for details. These
quasimorphisms come as homogenisation of spectral invariants of a Lagrangian
Floer theory associated to a collection of curves on a surface.



1.3. HAMILTONIAN DYNAMICS AND VARIATIONAL PRINCIPLES 21

To fix notation, if Σ is a closed surface, Symk+g(Σ) := Σk/Sk will denote its
k-fold symmetric product, and ∆ will be its singular locus, i.e. the fat diagonal

∆ = { (z1, . . . , zk)|∃i ̸= j, zi = zj } /Sk

The action of Sk is given by permutation of the factors: for (z1, . . . , zk) ∈ Σk

and σ ∈ Sk,
σ · (z1, . . . , zk) := (zσ(1), . . . , zσ(k))

If Σ is also oriented, it is symplectic and the symplectic form ω⊕k descends to
a singular symplectic form ωSymk+g(Σ) on the symmetric product. While the
symmetric product of manifolds in full generality is not a manifold but an orb-
ifold, one can give a structure of complex manifold to symmetric products of
Riemann surfaces. The symplectic structure on the quotient can be smoothed
out using a procedure devised by Perutz following a paper by Varouchas: for
details we refer to [57] and [21]. The fact that we use a Perutz-type symplectic
form on the symmetric product will always be in the background without be-
ing explicitly mentioned here, but it is fundamental in the construction of the
homology theory we are about to describe carried out in [21].

In what follows, X := Symk+g(Σg), and ωX is the singular symplectic form
induced by the symplectic form on Σg.

Let L1 × · · · × Lk+g =: L ⊂ X be a collection of k non intersecting circles
on Σg (i.e. L ∩∆ = ∅). We assume L1, . . . , Lk to be contractible. Let (Bj) be
the collection of connected components of Σg \

⋃k+g
i=1 Li, kj be the number of

connected components of ∂Bj , and Aj = Area(Bj). The collection L is said to
be η-monotone, for some η ≥ 0, if there exists a λ > 0 such that for every j

λ = 2η(kj − 1) +Aj (1.17)

The circles in L will be required to satisfy some topological conditions as well:
in [21] it is required that the cloures of the Bj in Σ be of genus 0, but as we show
in Section 2.3.1 we may relax this assumption. In this text we shall assume that
the g non contractible circles in L be homologically independent meridians in
Σg.

Remark that Symk+g(L) is in fact a Lagrangian in the symmetric prod-
uct, and the authors of [21] proceed to the definition of a Lagrangian Floer
complex associated to any Hamiltonian deformation of it. More precisely, let
H : Σg×S1 → R be a periodic Hamiltonian of time 1 map φ = ϕ1H : it naturally
defines a Hamiltonian function Symk+g(H) and a (non smooth) Hamiltonian dif-
feomorphism of the symmetric product which we denote Symk+g(φ). Assume
that for all i ̸= j ∈ {1, . . . , k} we have φ(Li) ⋔ Lj , and let x ∈ Symk+g(L). Let
us consider S̃ the set of all Hamiltonian paths from Symk+g(L) to itself which
are homotopic to the constant path x through paths between Symk+g(L) and
itself. A homotopy ŷ : ([0, 1]× [0, 1], [0, 1]× {0, 1}) → (X,Symk+g(L)) between
a Hamiltonian path

y : [0, 1] → X
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with endpoints on Symk+g(L) and x is going to be called a capping. By
[21], Lemma 4.10, the image of the Hurewicz morphism π2(X,Symk+g(L)) →
H2(X,Symk+g(L)) is freely generated by s homology classes, u1, . . . , us, where s
is the number of connected components in Σg\

⋃
Li. In the case we are interested

about there will be k+1 connected components and all of them, except for one,
will be discs: in this case we have k + 1 homology classes, u1, . . . , uk+1, and we
get the refined information about their intersections with the diagonal:

ui ·∆ = 2(ki − 1)

where ki = 1 for i = 1, . . . , k and kk+1 = k.
Each of these homology classes may now be used to change capping of an

orbit using he following method: if u represents any of the ui above and ŷ is a
capped Hamiltonian path, we may consider their concatenation ŷu = ŷ#u, and
the quantity ωX(u) + u ·∆ does not depend on the choice of representative u.
It makes sense then to define the set of capped orbits modulo equivalence

S =
{
ŷ|y ∈ S̃

}
/ ∼

where x̂ ∼ ŷ ⇔ x = y, ωX(x̂) + ηx̂ ·∆ = ωX(ŷ) + ηŷ ·∆. Define now

C̃F
•
(Symk+g(H), Symk+g(L);C) =

⊕
ŷ∈S

C · [ŷ]

Recapping gives a Z action on C̃F
•
(Symk+g(H), Symk+g(L);C), so that we

can see it as a C[T, T−1]-module: the Floer complex we are interested in is going
to be the tensor product

CF •(H,L;C) = C̃F
•
(Symk+g(H), Symk+g(L);C)⊗C[T,T−1] Λ

with the Novikov field Λ

Λ = C[[T ]][T−1] =

{ ∞∑
i=0

aiT
bi |ai ∈ C, bi ∈ Z, bi < bi+1

}

The differential on CF •(H,L;C) as customary is defined by a count of holomor-
phic curves with Lagrangian boundary conditions: fix two Hamiltonian paths
yi : [0, 1] → X, i = 0, 1 with boundary conditions on Symk+gL and a time-
dependent almost complex structure on X. We consider strips u : R×[0, 1] → X
which satisfy the following constraints:

u(s, 0), u(s, 1) ∈ Symk+g(L)

lims→−∞ u(s, t) = y0(t), lims→+∞ u(s, t) = y1(t)

(∂s + Jt∂t −XH)u(s, t) = 0

(1.18)

Remark 1.3.29. Given a holomorphic structure J on Σg, one induces naturally
a holomorphic structure on X, denoted JX .
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Solutions to these equations belonging in moduli spaces of virtual dimension
0 (after holomorphic reparametrisation of R+ i[0, 1]) are going to be regular, so
that a differential can be well defined, and it can be proved that ∂2 = 0. Along
these curves, the quantity

Aη
H(ŷ) :=

∫ 1

0

SymHt(y(t)) dt−
∫
[0,1]×[0,1]

ŷ∗ωX − η[ŷ] ·∆ (1.19)

strictly decreases: Aη
H is called the action, and CF •(H,L;C) is a filtered dif-

ferential complex. Remark that to make sense of this, we need to observe that
Aη
H is constant on the equivalence classes in S, and to make the interaction

between the Z action (or equivalently, the action of the formal variable T ) and
Aη
H explicit: as it is now classical (see for instance [71]) it corresponds to a

translation, and given our monotonicity requirement

Aη
H([ŷ]T ) = Aη

H([ŷ])− λ

Let HF •
a (H,L;C) be the homology of the subcomplex

CF •
a (H,L;C) =

⊕
[ŷ]∈S, Aη

H([ŷ])<a

C · [ŷ]

In analogy with classical theories, we define the spectrum Spec(H : L) as
the action values of capped intersection points: it is a closed and nowhere dense
subset of R ([56]).

Remark 1.3.30. If g = 0 the definition of the action functional in Equation
1.19 is an extension of the usual one: the term counting intersections with the
diagonal depends on a procedure of inflation of a Perutz-type symplectic form one
does in order to achieve monotonicity of the Lagrangian link in the symmetric
product, when the circles satisfy the larger definition of η-monotonicity. For
details, we refer to [21], Remark 4.22. For the following it is necessary to
notice that one makes no normalisation assumptions on the symplectic form in
order to define the action as in 1.19.

This Lagrangian Floer theory comes with its PSS isomorphisms ([21], [75]),
and as Λ-vector spaces

HF •(H,L;C) ∼= H((S1)k; Λ)

This implies that HF •(H,L;C) is non trivial, and that it moreover has a mul-
tiplicative structure ([16]), so let e ∈ HF •(H,L;C) be the unit for its product
and define

cSymk+g(L)(H) = inf{a ∈ R|e ∈ Im(HF •
a (H,L;C) → HF •(H,L;C))}

and cL := 1
k cSymk+g(L). One of the fundamental results in [21] is the following

Theorem:
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Theorem 1.3.31 ([21], Theorem 1.13). For any η-monotone Lagrangian link
L on Σg, the link spectral invariant

cL : C∞([0, 1]× Σg) → R

satisfies the following properties:

• (Spectrality) For any H, cL(H) ∈ Spec(H : L).

• (Hofer Lipschitz) For any H,H ′ Hamiltonians,∫ 1

0

min
x∈Σ

(Ht(x)−H ′
t(x)) dt ≤ cL(H)−cL(H ′) ≤

∫ 1

0

max
x∈Σ

(Ht(x)−H ′
t(x)) dt

• (Lagrangian Control) If for each i ∈ {1, . . . , k+ g}, we have Ht|Li
= si(t)

for time-dependent constant si : [0, 1] → R, then

cL(H) =
1

k + g

k+g∑
i=1

∫ 1

0

si(t)dt

and for a general Hamiltonian

1

k + g

k+g∑
i=1

∫ 1

0

min
x∈Li

Ht(x) dt ≤ cL(H) ≤ 1

k + g

k+g∑
i=1

∫ 1

0

max
x∈Li

Ht(x) dt

• (Subadditivity) For any H,H ′, cL(H#H ′) ≤ cL(H)+cL(H
′), if H#H ′(x, t) =

Ht(x) +H ′
t((ϕ

t
H)−1(x))

• (Homotopy Invariance) If H,H ′ are two normalised Hamiltonians with
same time 1 map and which determine the same element in H̃am(Σ, ω),
then cL(H) = cL(H

′).

• (Shift) If H = H ′ + s, for a function s ∈ C ([0, 1];R), then

cL(H) = cL(H
′) +

∫ 1

0

s(t) dt

The proof of this Theorem can be found in Section 6.4 of [21].

In the case g = 0, we may homogenise the spectral invariants cL to find
quasimorphisms on Ham(S2, ω): if φ̃ ∈ H̃am(S2, ω) let

µL(φ̃) = lim
n→∞

cL(φ̃
n)

n

and since π1(Ham(S2, ω)) is finite, µL only depends on the time 1 map. We can
then formulate the following theorem, proved in Section 7 of [21].
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Theorem 1.3.32 ([21], Theorems 7.6, 7.7). µL : Ham(S2) → R satisfies the
following properties:

• µL only depends on the monotonicity constant η and on the number of
components of the Lagrangian link L: we will then write µk,η for the quasi-
morphism associated to any η-monotone Lagrangian link of k components.

• The differences µk,η − µk′,η′ are C 0-continuous.

Moreover, the properties in Theorem 1.3.31 translate to the following ones for
the µk,η:

• (Hofer Lipschitz) |µk,η(φ)− µk,η(ψ)| ≤ dH(φ,ψ)

• (Lagrangian Control) If φ = ϕ1H for a mean normalised Hamiltonian H
such that Ht|Li

= si(t),

µk,η(φ) =
1

k

k∑
i=1

∫ 1

0

si(t) dt

and in general, if H is mean-normalised but not necessarily a time depen-
dent constant on the Lagrangian link:

1

k

k∑
i=1

∫ 1

0

min
x∈Li

Ht(x) dt ≤ µk,η(φ) ≤
1

k

k∑
i=1

∫ 1

0

max
x∈Li

Ht(x) dt

• (Support Control) If φ = ϕ1H where Supp(H) ⊂ S2 \
⋃
i Li, then

µk,η(φ) = −Cal(φ)

As we are going to work with spheres not necessarily of area 1, say a, we
shall write µak,η for the quasimorphisms on Ham(S2(a)).

Remark 1.3.33. The properties listed in Theorem 1.3.31 are clearly interre-
lated, for instance (Shift) is an immediate consequence of (Hofer Lipschitz).
The same is true for Theorem 1.3.32, and one remark is needed: for the (Sup-
port Control) property we are assuming that the symplectic volume of S2 to be
1. Indeed, this properties follows from the (Shift) property of cL, the definition
of µk,η and its (Lagrangian Control) property: to compute µk,η(ϕ1H) we need to
normalise H, and this operation in general consists in defining H ′ as follows

H ′
t(x) = Ht(x)−

1

Area(S2)

∫
S2
Htω

and (Support Control) reads µArea(S
2)

k,η (ϕ1H) = − 1
Area(S2)Cal(ϕ1H). This fact is

not essential but explains the relatively convoluted definition of the quasimor-
phism appearing in the Appendix B.

Remark 1.3.34. In the case g ≥ 1 the spectral invariants do not have the
quasimorphism property, but they are shown to be local quasimorphisms in [47].
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1.3.4 Hamiltonian Floer Homology
In this Section we assume that π2(M) = 0. Suppose that φ ∈ Hamc(M) is
non degenerate3. Under these hypotheses, one can define the Floer complex
associated to φ the following way. Choose an almost complex structure J ∈
Jc(M) compatible with the symplectic form (if M is non compact we also have
to assume that J behaves well at infinity). The generators of the group are
contractible fixed points of φ, and we take their integral linear combinations:

CF (H,J ;Z) :=
⊕

x∈Fix(φ)

Z · x

This complex is graded by the Conley-Zehnder index. The differential of
CF (H,J ;Z) counts perturbed J-holomorphic cylinders with asymptotic condi-
tions. Such maps are smooth functions

u : Rs × S1t →M

solving the Floer equation

∂su+ J(u)(∂tu−XH(u)) = 0 (1.20)

We denote by M̃(x−, x+; J) the set of all cylinders u satisfying to the previous
conditions, and such that are moreover asymptotic to x− and x+:

x±(t) = lim
s→±∞

t(s, t)

where the convergence is uniform in t, and all derivatives in s tend to zero.
A map u defined on the cylinder, satisfying Floer equation and asymptotic
to Hamiltonian orbits is called a Floer cylinder. Remark that M̃(x−, x+; J)
has an obvious R-action, given by translation along the variable s. Denote by
M(x−, x+; J) the quotient of this action. For a generic choice of J , if CZ(x−)−
CZ(x+) ≤ 2, the set M(x−, x+; J) is in fact an oriented smooth manifold of
dimension CZ(x−) − CZ(x+) − 1. If CZ(x−) − CZ(x+) = 1, it is moreover
compact, i.e. a finite set of points with signs. We define the differential of
CF (H;Z) by

∂x− :=
∑

CZ(x+)=CZ(x−)−1

#M(x−, x+; J)x+

The fact that ∂2 = 0 is a deep theorem, and is obtained from the analysis of
M(x−, x+; J) when CZ(x−)− CZ(x+) = 2: in this case it is an 1-dimensional
open manifold which may be compactified adding “broken trajectories”. This
gives a 1-dimensional oriented compact manifold with boundary M(x−, x+; J),
and the boundary is described by the identity

∂M(x−, x+; J) =
∐

CZ(x−)<CZ(y)<CZ(x+)

M(x−, y; J)×M(y, x+; J)

3Recall that if M is non compact or has non empty boundary we have to perturb φ to
achieve non degeneracy.
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The complex comes with a filtration: given a loop on the manifold, we
consider a capping

x̂ : D →M, x(e2πit) = x(t)

and define the symplectic action

AH : C∞(S1;M) → R, AH(x) :=

∫
S1
Ht(x(t)) dt−

∫
D
x̂∗ω

The Floer complex is morally the Morse complex of the action functional. In
particular, the action decreases along the curves we use to define the differential,
and extending the definition of AH to chains

AH

(∑
i

λixi

)
:= max

i|λi ̸=0
AH(xi)

we obtain the inequality
AH(∂x) < AH(x)

The subgroup

CFλ(H,J ;Z) :=
⊕

x∈Fix(φ),AH(x)<λ

Z · x

is therefore a subcomplex. We denote byHF (H,J ;Z) the homology of CF (H,J ;Z),
and by HFλ(H,J ;Z) that of the subcomplex filtered by action.

Floer homology is invariant, in the following sense: given two pairs (H,J),
(H ′, J ′) of regular (i.e. generic) Floer data, there is a homotopy connecting
them, and inducing chain morphisms (called “continuation maps”)

CF (H,J ;Z) → CF (H ′, J ′;Z)

These maps turn out to be quasi-isomorphisms. In particular, the homology
HF (H,J ;Z) depends neither on the Hamiltonian nor on the almost complex
structure we have chosen. Furthermore, if M is compact the Floer homology
is isomorphic to the singular homology of the manifold, as computed by Morse
theory.

The action filtration also behaves well under continuation maps, in anal-
ogy to what happens in the case of generating functions, see (1.16). For two
Hamiltonians H and H ′ denote by

E+(H ′ −H) =

∫ 1

0

max
x∈M

(H ′
t(x)−Ht(x)) dt

If Φ is a continuation maps from H to H ′ then for any generator x of CF (H;Z)

AH′(Φ(x)) ≤ AH(x) + E+(H ′ −H)

which means that for all λ ∈ R, Φ restricts to its filtered version

Φ : CFλ(H;Z) → CFλ+E+(H′−H)(H ′;Z)
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The underlying philosophy is that, while the homology of the complex as a whole
does not carry information about the specific diffeomorphism at hand, the filtra-
tion is a finer invariant. It may be in fact used to perform Hofer measurements:
without going into the details, taking the homology of the subcomplexes filtered
by maximal action, one finds a persistence module. The space of persistence
modules is endowed with a distance, called interleaving distance. The function
sending a diffeomorphism to its persistence module turns out to be Lipschitz
with respect to the Hofer and interleaving distances; a reference is [59].

Higher homology operations Floer theory comes with higher operations.
They are defined counting moduli spaces of curves satisfying a Floer-type equa-
tion as well. They were first defined by Schwarz in his PhD thesis [64], and
some technical generalisations and improvements are for instance contained in
[1], [62] and [25].

Let φ ∈ Hamc(M) be non degenerate, let p ∈ N and assume that φp is
also non degenerate. Fix a generating Hamiltonian H for φ, and H#p its p-th
iterate. The p-pair of pants product is a linear map

CF (H,J ;Z)⊗p → CF (H#p, J ;Z)

The moduli spaces it counts are defined the following way: let Sp be a model
for the pair of pants with p legs, let us assume it is a p + 1 times punctured
2-dimensional sphere. Among the punctures, exactly one will be called “posi-
tive”, the other being “negative” Due to the lack of global coordinates for TSp
one cannot just write Floer equation globally as in the case of the Floer dif-
ferential. A way to go around this problem is to choose cylindrical ends for
Sp: this operation amounts to defining a biholomorphism between a negative
half-cylinder

(−∞,−R]× S1 (R > 0)

and a neighbourhood of a puncture, for the p negative punctures, and a biholo-
morphism between a positive half cylinder

[R,+∞)× S1 (R > 0)

and a neighbourhood of the only positive puncture. We assume cylindrical ends
of different punctures to be disjoint. On each cylindrical end we can now write
Floer equation, so

M(x1, . . . , xp; y; J)

is defined to be the set of smooth maps

u : Sp →M

which at the i-th negative puncture tend to xi (1-periodic orbit of φ), at the
positive puncture are asymptotic to y (closed orbit of φ, of period dividing p),
satisfy Floer equation on the cylindrical ends and are J-holomorphic elsewhere.
The last two conditions are made to be compatible using a partition of the
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identity on Sp. For the good definition of the operation, i.e. for the moduli
spaces to be smooth manifolds of the right dimension, we still need transver-
sality. We mention that it can be achieved (see the references given above) via
what is called a domain-dependent perturbation: whenever needed, we require
u as above to satisfy a so perturbed Floer equation on the cylindrical ends.

Counting elements in M(x1, . . . , xp; y; J) defines an operation between chain
complexes

CFk1(H,J ;Z)⊗ · · · ⊗ CFkp(H,J ;Z) → CF2(1−p)+
∑p

i=1 ki
(H#p, J ;Z)

x1 ⊗ · · · ⊗ xp 7→
∑
y

#M(x1, . . . , xp; y; J) · y

The sum runs on the fixed points y of φp of correct Conley-Zehnder index.

What we shall need next is a holomorphicity Lemma proved by Fabert. Fix
a Hamiltonian H and an almost complex structure J on M. We paraphrase the
Lemma as follows.

Lemma 1.3.35 (Fabert, [25]). Let π : Sp → R× S1 be a holomorphic cover of
the cylinder. Let u : Sp → M be smooth. Then there exists an almost complex
structure J̃ on R×S1×M such that, given a pair of pants u which is negatively
asymptotic to x1, . . . , xp and positively asymptotic to y, u ∈ M(x1, . . . , xp; y, J)
if and only if the map

(π, u) : Sp → R× S1 ×M

is J̃ holomorphic.

1.3.5 Siefring product of Punctured Holomorphic Curves

We now recall the basic properties of the intersection product of punctured
holomorphic curves in 4-manifolds as defined by Siefring [66] (but a good source
is also [74], and we are going to heavily draw from there).

Remark 1.3.36. Since our definition of linking number differs from that of
[67] and [74], we shall have to insert normalising factors of 1

2 in some of the
definitions below, to maintain consistency.

The Siefring product ∗ of two asymptotically cylindrical maps (maps de-
fined on a punctured Riemann surface with values in a symplectisation and
asymptotic conditions near the punctures) is an integer which generalises the
intersection product for pseudo-holomorphic maps in 4-manifolds with compact
domain. In particular, the Siefring product is a homotopy invariant in a class
of asymptotically cylindrical maps with fixed asymptotics. We refer to [66] and
[74] for details of the definitions. Since we are going to apply this to curves
appearing in the definition of Hamiltonian Floer homology, we cast everything
already in this language: we shall focus on curves of genus 0, with p negative
punctures and 1 positive one, embedded in a symplectisation and asymptotic
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to simply covered Hamiltonian orbits. This way, the discussion greatly simpli-
fies and we do not need to define asymptotically cylindrical maps with greater
generality.

Fix φ ∈ Ham(Σ), where Σ is either a closed symplectic surface or R2 gener-
ated by a Hamiltonian H (if Σ = R2, we assume H to be compactly-supported).
Fix an ω-compatible almost complex structure J on Σ. The 2-form, not sym-
plectic in general, we consider on Rs × S1t ×Σ is twisted by the Hamiltonian: if
ω is the form we consider on Σ, the one we obtain on the 4-manifold is

Ω := ω + dt ∧ dH

Now fix two cylinders
u, v : Rs × S1t → Σ

satisfying Floer equation (1.20). The graphs of u and v, from now on denoted
u and v, are holomorphic for a choice of compatible almost complex structure:

J̃ |TΣ = J, J̃∂s = ∂t +XH

The almost complex structure J̃ is also invariant under s-translation. Such an
almost complex structure is said to be “cylindrical”. One can check that u and
v satisfy the Floer equation if and only if ũ and ṽ are J̃-holomorphic.

For now we assume u and v have only finitely many intersections. The
Siefring product u ∗ v will be the sum of two terms: u · v, which counts intersec-
tions between the graphs contained in a compact set, and ι∞(u, v), which may
be interpreted as a count of “intersections hidden at infinity”. What follows is
needed to detail the definition of the latter contributions.

We start by fixing a symplectic trivialisation of TΣ at the asymptotic orbits
of u and v, let τ be this trivialisation. We can now look at the asymptotic Floer
operator: in such a trivialisation it takes the form

A = −J0
d

dt
− S

where J0 is the standard complex structure on R2 and S is a closed path of sym-
metric 2×2 matrices. It is a Theorem ([31]) that the eigenfunctions of this kind
of operators have a well defined linking number (they solve a non-autonomous
linear ODE), and moreover eigenfunctions sharing the same eigenvalue have the
same linking number. For an eigenvalue λ ∈ σ(A) of A we may then write

lkτ (λ) =
1

2
lk(fλ, 0), where Afλ = λfλ and 0 is the constant path at 0

This function is increasing, surjective in Z and every integer has precisely two
preimages.

We define then what is called the extremal winding at an orbit γ

ατ+(γ) = min { lkτ (λ)|λ ∈ σ(A), λ > 0 }
ατ−(γ) = max { lkτ (λ)|λ ∈ σ(A), λ < 0 }
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and the parity
p(γ) = ατ+(γ)− ατ−(γ)

which takes values in {0, 1}. These three quantities are related to the Conley-
Zehnder index4 of γ by the relations

−CZτ (γ) = 2ατ−(γ) + p(γ) = 2ατ+(γ)− p(γ) (1.21)

Remark that the Conley-Zehnder index in principle does depend on the trivi-
alisation one chooses, but this was not important in our discussion above since
we restricted to the symplectically aspherical case.

Denote by u+, v+ (resp. by u−, v−) the orbits which u and v are positively
(resp. negatively) asymptotic to. We set now

ιτ (u,±∞; v ±∞) = 0

if u± ̸= v±. Otherwise we do the following: assume u(+∞, ·) = v(+∞, ·) = γ,
parameterise u(s, ·) = v(s, ·) for s >> 0 using an exponential map on γ∗TΣ.
Call

hv, hu : [s0,+∞)× S1 → γ∗TΣ

such expressions for u and v respectively. Remember that the τ we defined above
restricts to a trivialisation for γ∗TΣ (such τ is in fact a choice of trivialisation
at every asymptotic orbit of our pairs of pants). The number ιτ∞(u,±∞; v,±∞)
is defined as

ιτ∞(u,±∞; v,±∞) = ∓1

2
lkτ (hu(s, ·)− hv(s, ·)) (1.22)

The term on the right is the linking number with 0 of a S1-family of nonzero
complex numbers: we have a braid with two strands in C, and we compute the
linking number as defined at the beginning of this Chapter. The expression in
the right hand side of (1.22) is well-defined because of our hypothesis: u and v
have only finitely many intersections, so in particular

hu(s, ·)− hv(s, ·) ̸= 0

for |s| >> 0. We highlight the fact that ιτ∞ coincides with the asymptotic linking
number only at negative punctures, it is its opposite at the positive ones. We
define ιτ∞(u, v) to be the sum of the contributions of linking numbers at positive
and negative infinity:

ιτ∞(u, v) := ιτ∞(u,−∞; v,−∞) + ιτ∞(u,+∞; v,+∞)

Now, by definition of ατ±(γ), ιτ∞(u,±∞; v,±∞) may be a priori bounded:
since u and v are pseudo-holomorphic, up to an infinitesimal error the maps hu
and hv coincide with eigenfunctions of the asymptotic Floer operator, multiplied

4Our normalisation is the opposite of that in [74] and [66]
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by an exponential depending the s-coordinate and asymptotic to 0. Defining
the integer

Ωτ±(γ1, γ2) :=

{
∓ατ∓(γ) γ1 = γ2 = γ

0 γ1 ̸= γ2
(1.23)

we have the inequality

ιτ∞(u,±∞; v,±∞) ≥ Ωτ±(u(±∞, ·), v(±∞, ·)) (1.24)

So for u, v Floer cylinders with finitely many intersections we set

ι∞(u, v) := ιτ∞(u, v)− (Ωτ−(u(−∞, ·), v(−∞, ·)) + Ωτ+(u(+∞, ·), v(+∞, ·)))

and one may check that ι∞(u, v) does indeed not depend on the trivialisation
τ . We define the Siefring product of u and v to be

u ∗ v := u · v + ι∞(u, v) (1.25)

If u and v do not have finitely many intersections, we perturb either cylinder,
say v by a section of v∗TΣ (the tangent space of Σ is naturally a subspace of
the tangent space of the symplectisation) whose linking number at ±∞ at both
punctures is 0. Let vτ be the perturbed copy of v: it has now finitely many
intersections with u and we define

u •τ v := u · vτ

In this case, the Siefring product is defined to be

u ∗ v := u •τ v − (Ωτ−(u(−∞, ·), v(−∞, ·)) + Ωτ+(u(+∞, ·), v(+∞, ·))) (1.26)

We extend these definitions to the case of curves with several positive and
negative punctures, asymptotic to Hamiltonian orbits at each puncture, such as
those we use in the definition of Floer products. The context we are going to
apply Siefring’s theory here will be a bit different from the above, since we are
not going to consider curves in Rs × S1t × Σ anymore, rather into a branched
cover of it. Since the curves will still live in an almost complex cobordism in
the sense of [66, Section 2.2] and this is the setting in which Siefring’s theory
was originally cast, what we stated above can indeed be extended to the case
of curves with more than two punctures. In principle we could keep working
with pairs-of-pants in the symplectisations, but we would run into two problems.
The first is that at punctures curves in R× S1 ×Σ the asymptotic orbits might
turn out to be multiply covered, and the definitions we shall presently give here
should be changed to take this into account. The second is that we would not
be able to interpret intersections counting towards u ∗ v as changes in linking
numbers of braids.

If u and v are two pairs-of-pants with p negative punctures (inputs) and 1
positive puncture (output), we see them as maps

u, v : S2 \ {z1−, . . . , z
p
−, z+} → Σ
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As before we consider their graphs (embbeded in a branched covering of the
symplectisation Rs × S1t ×Σ), and we want to compute their intersections. The
asymptotic quantities ιτ∞ and Ωτ± still make sense in the case of pairs-of-pants
since they just need cylindrical coordinates near the ends for their definition.
We define

ιτ∞(u, zi−; v, z
j
−), ι

τ
∞(u, z+; v, z+)

as above, and we have

ιτ∞(u, v) := ιτ∞(u, z+; v, z+) +

p∑
i,j=1

ιτ∞(u, zi−; v, z
j
−) (1.27)

Likewise, we set

ι∞(u, v) := ιτ∞(u, v)−

Ωτ+(u(z+, ·), v(z+, ·)) +
p∑

i,j=1

Ωτ−(u(z
i
−, ·), v(z

j
−, ·))


(1.28)

to define u ∗ v formally as above if u and v have finitely many intersections,
otherwise we set

u ∗ v := u •τ v −

Ωτ+(u(z+, ·), v(z+, ·)) +
p∑

i,j=1

Ωτ−(u(z
i
−, ·), v(z

j
−, ·))

 (1.29)

We highlight the fundamental property that the Siefring product is a homotopy
invariant in each class of asymptotically cylindrical curves; in particular if u and
u′ are asymptotically cylindrical maps which are homotopic via a compactly
supported homotopy, for any other asymptotically cylindrical map v we have
the equality

u′ ∗ v = u ∗ v

This simple fact is one of the main motivations for the definition of the Siefring
product, and a heuristic explanation may be found above, in the discussion after
(1.25).
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Chapter 2

Hofer Norms on Braid Groups

2.1 Introduction

In this chapter we report the results contained in [51] and in a joint work with
Ibrahim Trifa [52]. The results of the former are about the Hofer geometry
of Hamc(D), while those of the latter will give information about the Hofer
geometry of Hamc(Σg,p) for any g ≥ 0 and p ≥ 1. Since the work with Trifa
is more general and there is a significant overlap of the techniques we adopt,
we report the results and methods directly from [52] with the addition of some
material from [51] which is used there. The hope is to avoid redundancies which
might make the exposition heavier.

Given a pre-monotone configuration of circles (Definition 2.2.1), we consider
the subgroup of Ham fixing it. To every diffeomorphism φ of this kind, we may
associate a braid type b(φ), which is an element in Bn,g,p. We give an estimate
from below on the Hofer norm of φ which only depends on the pre-monotone
configuration of circles and b(φ). We then pushforward the Hofer norm on Ham
to obtain a pseudonorm on Bk (in the case of the disc) or on a proper subgroup
of Bn,g,p (for higher genus surfaces). Our results on the geometry of Ham will
be pushed forward as well to lower bounds on the induced metrics on braid
(sub)groups.

Our main result might be stated as follows:

Theorem 2.1.1. Let L be a pre-monotone configuration of circles on Σg,p, and
let BL ⊆ Bk,g,p be the image of the braid type function b. There exists a function
f : BL → Z, non trivial on the generators of BL and unbounded, such that if φ
preserves the link L then

∥φ∥ ≥ 1

2
|f(b(φ))|

For the precise statement, we refer to Theorem 2.2.3.

35
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Σ2,2

Lk+1 Lk+2

L1
Lk

Figure 2.1: This illustration shows what a pre-monotone configuration looks
like, without claiming to accurately depict the area conditions. In red we have
the non contractible components of the configuration, in green the contractible
ones.

2.2 Setup and Main Results
Let Σg,p be a compact oriented surface of genus g with p boundary components,
with area form ω normalised so that∫

Σg,p

ω = 1

Let L = L1, . . . , Lk+g be a set of k + g disjoint, embedded circles in Σg,p: we
call L a Lagrangian link.

Definition 2.2.1. We say that L is premonotone if the following conditions are
satisfied:

i) exactly g of the circles in L are non contractible;

ii) Σg,p \
⋃k+g
i=1 Li is a disjoint union of k discs (Bj)j=1,...,k and a pair of

pants Bk+1 with p+ k + 2g − 1 legs;

iii) There exist λ ∈
(

1
k+1 ,

1
k

)
, such that λ =

∫
Bj
ω for j = 1, . . . , k.

See Figure 2.1 for a depiction of a configuration satisfying conditions i) and ii).

Given a premonotone Lagrangian link, we denote by HamL(Σg,p) the sub-
group of Hamc(Σg,p) stabilising the Lagrangian link as a set:

HamL(Σg,p) :=
{
φ ∈ Hamc(Σg,p)|∃σ ∈ Sk+g, φ(Li) = Lσ(i)

}
To a diffeomorphism in HamL(Σg,p) we may associate an element of the braid
group Bk,g,p. This function is defined the following way: choose one base point
per contractible circle in L, denote it by pi ∈ Li for i = 1, . . . , k. Any Hamilto-
nian isotopy (φt)t∈[0,1] between the identity and φ ∈ HamL(Σg,p) provides then
a collection of k curves t 7→ φt(pi). Remark that there exists a permutation σ
in Sk+g such that for all i, φ(Li) = Lσ(i), and contractible circles are mapped
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t = 0

t = 1

⇒ = σ1σ
−1
2

Figure 2.2: The definition of the braid-type function b in the case Σg,p = D.

to contractible circles. For each contractible Li, choose then a path in Lσ(i)
connecting φ(pi) to pσ(i). The concatenation of the curves t 7→ φt(pi) with the
respective connecting paths yields an element in Bk,g,p. The braid obtained this
way does not depend on the choice of the base points, of connecting paths or of
the Hamiltonian isotopy (a proof of this fact is included later). We thus have
defined a groups homomorphism

b : HamL(Σg,p) → Bk,g,p

Denote by BL the image of b (it will be described in detail in Section 2.3.3).

Remark 2.2.2. We choose to require in this definition that the circles L1, . . . , Lk
bound discs of same area. Allowing for discs of different areas might result in a
slight generalisation, but since we are considering Hamiltonian maps (which in
particular preserve areas), if the configuration is not pre-monotone we are not
going to be able to produce any braid in Bn,g,p as braid type of a Hamiltonian
diffeomorphism. If however the configuration is pre-monotone and Σg,p = D,
the morphism HamL(D, ω) → Bk is easily seen to be surjective: if k = 2, up
to symplectomorphism of D the two discs are conjugated by a half-turn, which
corresponds to a generator of B2. If k ≥ 3, to represent any generator of Bk
it suffices to consider a disc containing the two circles corresponding to the two
strands in play, and then remark that we can apply what said in the case k = 2.
If g ≥ 1, the braid type function b cannot be surjective. Indeed, any non con-
tractible circle in L is Hamiltonianly non displaceable, and therefore has to be
mapped to itself by any element in HamL(Σg,p). See Section 2.3.3 for details.
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Our main result is the following:

Theorem 2.2.3. There exists a family (f(v1,v2))vi∈V of group homomorphisms
BL → R indexed on the square of a p-dimensional simplex V (defined in Section
2.4.2) such that for every vi ∈ V and φ,ψ ∈ HamL(Σg,p),

dH(φ,ψ) ≥ 1

2
|f(v1,v2)(b(φψ

−1))| (2.1)

In particular, we have the following estimate for the Hofer norm:

∥φ∥ ≥ 1

2
sup

(v1,v2)∈V 2

|f(v1,v2)(b(φ))| (2.2)

If we define the following function on BL:

f(g) = max
(v1,v2)∈V 2

|f(v1,v2)(g)| (2.3)

In the case of the generators σj, ai, b−1
i aibi we then obtain the explicit values:

f(σj) =
1

2
f(ai) =

1

2
f(b−1

i aibi) =
1

2(k + g)

(k + 1)λ− 1

k + 2g − 1

Remark 2.2.4. We compute in (2.17) explicit values for the maximum in 2.3

Remark 2.2.5. This result seems counter-intuitive when compared to a result
of Khanevsky’s contained in [39]. In that paper, Khanevsky defines the notion
of homological trajectory of a Hamiltonian diffeomorphism defined on a surface
and fixing a given disc. He then proceeds to prove that, whenever the genus of
the surface is positive, there exists a constant only depending on the disc such
that one can realise any trajectory with a Hamiltonian diffeomorphism of Hofer
energy lower than this threshold. In fact, it is easily seen that such diffeomor-
phisms cannot stabilise any non contractible component of the Lagrangian link
L, therefore they do not appear in our treatment. If anything, this shows that
to find a result like ours, the constraint of fixing a number of non contractible
circles equal to the genus is in fact minimal (otherwise it is possible to construct
those diffeomorphisms, realising arbitrarily complex braids with bounded Hofer
energy).

In the case of the disc, we in fact find a quasimorphism that is sensitive to
the linking number of braids (this is contained in [51]).

Theorem 2.2.6. Let L be a pre-monotone Lagrangian link in D with k compo-
nents bounding discs of area λ ∈

(
1
k+1 ,

1
k

)
. There exists a Hofer 2-Lipschitz ho-

mogeneous quasimorphism Qk : Hamc(D, ω) → R such that if φ ∈ HamL(D, ω)
has associated braid type b(φ), then

Qk(φ) =
1

2k

(k + 1)λ− 1

2(k − 1)
lk(b(φ))
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Remark 2.2.7. There exists in fact a linear independent family of quasimor-
phisms with the feature that restricted to HamL(D, ω) they are proportional to
the linking of the braid associated to the diffeomorphism; the quasimorphism in
Theorem 2.2.6 happens to be the one with the largest proportionality constant.

We prove Theorems 2.2.3 and 2.2.6 in Section 2.4.2.

We now define a norm on BL. For any a ∈ BL we set

∥a∥L := inf
φ∈HamL(Σg,p),b(φ)=a

∥φ∥ (2.4)

It is easy to check that ∥·∥ is a pseudonorm on BL.

A corollary of Theorem 2.2.3 is an estimate from below of ∥·∥L:

Corollary 2.2.8. Let a ∈ BL. Then, if f is the function from Theorem 2.2.3,

∥a∥L ≥ 1

2
· |f(a)| (2.5)

As in [51], this is not enough to conclude non degeneracy as soon as k+g ≥ 2
(as soon as the genus is positive, there are no interesting cases we can consider
for k + g ≤ 2). We may however adapt a proof by Chen contained in [15] to
show that

Theorem 2.2.9. For a pre-monotone L, the pseudonorm ∥·∥L is non degener-
ate.

Chen had in particular proved this fact for braids on the disc.
Recall the existence of the real-valued Calabi morphism on Hamc(Σg,p) (for

a definition, see for instance [49, Section 10.3]). An immediate corollary of this
result is the existence of Hamiltonian diffeomorphisms in the kernel of Calabi
with nonzero asymptotic Hofer norm.

For any φ ∈ Hamc(Σg,p), we define its asymptotic Hofer pseudonorm by

∥φ∥∞ := lim
n

∥φn∥
n

We may now state the following elementary consequence of Theorem 2.2.3:

Corollary 2.2.10. Let φ ∈ HamL(Σg,p). Then

∥φ∥∞ ≥ 1

2
· |f(b(φ))|

Moreover, any braid type in the image of b may be realised by a diffeomorphism
in the kernel of Calabi.

Proof. Since f(v1,v2) and b are both morphisms of groups for all vi ∈ V , the only
statement which is not entirely trivial is the one about the kernel of Calabi.
This is easily seen, since Calabi is a morphism of groups, and we may compose
any element in HamL(Σg,p) by a diffeomorphism realising the trivial braid and
arbitrary Calabi.
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2.3 Technical Preliminaries

2.3.1 A proof of monotonicity
In this section we are going to prove that, given a pre-monotone (Definition
2.2.1) Lagrangian link L on a closed surface Σg, and a Hamiltonian H on Σg,
the Quantitative Heegaard-Floer Homology of the pair (L,H) is well defined.
We achieve it showing Proposition 2.3.1 and applying the arguments contained
in [21]. Our Proposition is needed since in [21] they need more non contractible
link components to prove a monotonicity result for the Lagrangian (they use
links such that the closure of each connected component of the complement
is planar). The homology also turns out to be nonzero: this follows from an
application of the Künneth formula (together with the independence of the
Homology on the Floer data) developed by Trifa and Mak in [47].

We assume that
∫
Σg
ω = A, A not necessarily being 1. In the following, we

split the circles in L in two classes: the contractible and the non contractible
ones. We assume that L1, ..., Lk (k ≥ 2) bound disjoint discs B1, ..., Bk of area
λ ∈ [ A

k+1 ,
A
k ), and that α1, ..., αg (αi := Lk+i) be meridians for each handle of

Σg. This way, we have L = L1 ∪ ... ∪ Lk ∪ α1 ∪ ... ∪ αg and X := Symk+g(Σg).
Let Bk+1 be the only connected component of Σg \L that is not a disc, and let
Ak+1 be its area. Let η be the real number satisfying

Ak+1 + 2η(k + 2g − 1) = λ

Then η can be recovered by the formula

η =
λ−Ak+1

2(k + 2g − 1)
=

(k + 1)λ−A

2(k + 2g − 1)

and in particular is non negative.

Proposition 2.3.1. For all [u] in the image of π2(X,Symk+g(L)) → H2(X,Symk+g(L))
one has

ωX([u]) + η∆ · [u] = λ

2
µ([u])

Proof. For 1 ≤ i ≤ k + 1, let Bi be the closure of Bi in Σg. Let ki be the
number of boundary components of Bi. For each i, fix a point ai in Bi, and
let Xai be the projection of Σk+g−1

g ×{ai} in Symk+g(Σg). In [21, Section 4.5],
it is explained how, when Bi is planar, one can construct a disc class [ui] in
H2(X,SymL), which satisfies [ui] ·Xaj = δi,j , [ui] ·∆ = ki − 1, and µ([ui]) = 2.
Here, the Bi’s for 1 ≤ i ≤ k are discs, therefore we can apply this construction
to get k classes satisfying ωX([ui]) + η∆ · [ui] = λ+ 0 = λ

2µ([ui]).
However, Bk+1 is not a planar domain (it is equal to the whole surface minus

k disjoint discs). But we can still apply a similar construction:
Let D̂ := Bk+1⊔

∐
1≤j≤gDj , where the Dj ’s are copies of the closed unit disc

D in C. Let πD̂ : D̂ → D be a (k + g)-fold simple branched covering, such that
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πD̂|Dj is a biholomorphism for all j, and πD̂i
|Bk+1

is a topological k-fold simple
branched cover, such that ak+1 is not a branched point. Since k ≥ 2, such a
branched cover always exists; one can construct it using techniques presented
in John Etnyre’s lecture notes [24]. Let vk+1 : D̂ → Σg be a map whose
restriction to Bk+1 is the identity, and which sends Dj to a point in αj . Then,
by tautological correspondence, we get a map uk+1 : (D, ∂D) → (X,SymL),
defined by uk+1(z) = vk+1(π

−1

D̂
(z)). The class [uk+1] also satisfies [uk+1] ·Xai =

vk+1 · ai = δi,k+1 for 1 ≤ i ≤ k + 1. Therefore, the proof of [21, Lemma 4.10]
goes through, and we get that the image of π2(X,SymL) → H2(X,SymL) is
freely generated by {[ui]}k+1

i=1 , and that the image of π2(X) → H2(X,SymL) is
freely generated by

∑k+1
i=1 [ui].

Since the [ui] satisfy the equation ωX([ui])+η∆·[ui] = λ
2µ([ui]) for 1 ≤ i ≤ k,

it only remains to show it for [uk+1].
We start by computing [uk+1] · ∆ in a similar fashion as in [21]. Let π :

Σg → S2 be a topological (k + g)-fold simple branched covering of the sphere.
Let u : S2 → X be the map tautologically corresponding to the pair (π, idΣg

).
Then, since [u] is in the image of π2(X) → H2(X,SymL), there exists an integer
c such that [u] = c

∑k+1
i=1 [ui]. Since [u] · Xai = 1 for all i, we get that c = 1.

Therefore, [u] ·∆ = (
∑k+1
i=1 [ui]) ·∆ = [uk+1] ·∆. Since idΣg is injective, there is a

one-to-one correspondence between branched point of π and points of S2 whose
image by u lies in ∆. Moreover, since the branched points are simple, we have
that [u] ·∆ is actually equal to the number of branched points of π. Therefore,
the Riemann-Hurwitz formula implies that 2− 2g = 2(k + g)− [u] ·∆, and we
finally get [uk+1] ·∆ = 2(k + 2g − 1). It only remains to compute the Maslov
index of [uk+1]:

µ([uk+1]) = µ

(
[u]−

k∑
i=1

[ui]

)
= 2⟨c1(TX), [u]⟩ − 2k

Let v be the Abel-Jacobi map, from Symd(Σg) to its Jacobian variety J ,
which is isomorphic to the 2g-dimensional torus T 2g. According to [5, Chapter
VII, Section 5], there is a class θ in H2(J) and a point q in Σg such that:

c1(TSymdΣg) = (d− g + 1)PD(Xq)− v∗θ

Now, in our case, d = k + g, and as above [u] is a generator of the image of
π2(X) → H2(X,SymL). Since J = T 2g is aspherical, v∗[u] vanishes, and

µ([uk+1]) = 2⟨c1(TX), [u]⟩ − 2k = 2(k + 1)[u] ·Xq − 2k = 2

where the last equality comes from the fact that [u] ·Xq = idΣg
· q = 1 when q

is not a branched point of π, which we can assume by perturbing π if necessary.
As claimed, we get

ωX([uk+1]) + η∆ · [uk+1] = Ak+1 + 2η(k + 2g − 1) = λ =
λ

2
µ([ui])
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Remark 2.3.2. One can use the results of this section to show the monotonicity
property for a more general class of links. In fact, let L be a link on Σg, and
B1, ..., Bs be the connected components of Σg \ L. Let ki be the number of
boundary components of Bi (the closure of Bi in Σg), gi be its genus, and Ai
be its area. Assume the following is satisfied:

• for all i, Bi contains exactly one non contractible component of L around
each of its handles (otherwise said, the non contractible components of the
link generate a g-dimensional subspace of the first homology of Σg);

• if gi > 0, ki ≥ 2;

• there exists constants λ and η such that for all 1 ≤ i ≤ s, Ai + 2η(ki +
2gi − 1) = λ.

Then, L satisfies the monotonicity property: for all [u] in the image of π2(X,Sym(L)) →
H2(X,Sym(L)), one has ωX([u]) + η∆ · [u] = λ

2µ([u]). As in [21], it is enough
to check the monotonicity property on the basic disc classes tautologically corre-
sponding to the Bi’s. When they are planar (gi = 0), it is shown in [21] that they
satisfy the monotonicity property by embedding Bi into the sphere. If gi ̸= 0, we
can embed Bi into Σgi by gluing ki discs of area λ on the boundary components.
Then, we can apply the result of this section to get the monotonicity property
for Bi.

2.3.2 Intersections in the symmetric product
We define elementary intersections between two strands: they are local de-
scriptions for intersections counting towards u · ∆ which do not lift along the
projection to the symmetric product. The goal of this section is to prove that
elementary intersections are transverse in the symmetric product, and may thus
be used to compute the intersection product with the diagonal.

First off, let us reduce the computation of the intersection product to count-
ing the intersections between two strands.

Let u : [0, 1] × [0, 1] → Symk(Σg,p) be a capping for an intersection point
between the Symk+gL and Symk+gφ(Symk+gL). Assume that for some (s0, t0),
u(s0, t0) ∈ ∆. Generically, u(s0, t0) belongs in the top stratum of the diagonal,
which means that considering the path in the symmetric product

t 7→ u(s0, t)

as a collection of k + g curves, at t0 exactly two of them coincide (and there
are no other intersections at t0 or different t-we may assume this generically).
Denote these two paths by u2 : [0, 1]× [0, 1] → Sym2Σg, and the 2-dimensional
diagonal by ∆2.

Lemma 2.3.3 (Locality of the intersection problem). In the setting as above,
the sign of the intersection at (s0, t0) between u and ∆ is the same of the inter-
section at (s0, t0) between u2 and ∆2.
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Proof. Let us now consider a local chart of Symk+g(Σg) adapted to ∆ at the in-
tersection u(s0, t0) = [x1, x1, x3, . . . , xk+g] ∈ ∆. Consider the function Sym2(Σg) →
Symk+g(Σg) defined via

[y1, y2] 7→ [y1, y2, x3, . . . , xk+g] (2.6)

This map is a complex embedding: it is clearly a continuous injective maps
between compact topological spaces, hence a homeomorphism on its image, and
its differential is injective. To prove this last point, we consider local charts
given by symmetric polynomials. In formulas,

Sym2(C) ∼= C2, [y1, y2] 7→ (y1 + y2, y1y2) (2.7)

Symk+g(C) ∼= Ck+g, [x1, . . . , xk+g] 7→ (e1(x1, . . . , xk+g), . . . , ek+g(x1, . . . , xk+g))
(2.8)

In the equation above, ei is the i-th symmetric polynomials on k + g variables,

ei(x1, . . . , xk+g) :=
∑

1≤l1<···<li≤k+g

i∏
j=1

xlj (2.9)

In particular, e1 and e2 on two variables are the expressions appearing in (2.6).
To prove injectivity of the differential, we just have to compute four derivatives.
When restricting to the image of the topological embedding,

e1(y1, y2, x3, . . . , xk) = y1 + y2 + x3 + · · ·+ xk+g (2.10)

e2(y1, y2, x3, . . . , xk+g) = (y1+y2)(x3+· · ·+xk+g)+y1y2+x3x4+· · ·xk+g−1xk+g
(2.11)

One can see that the topological embedding is in fact complex. Now, in local
charts,

∂y1+y2e1 = 1, ∂y1y2e1 = 0, ∂y1+y2e2 = x3 + · · ·+ xk+g, ∂y1y2e2 = 1 (2.12)

that which proves injectivity of the differential. Now, we see Sym2(Σg) as a
complex submanifold of Symk+g(Σg), and remark that the embedding maps ∆2

into ∆.
Assume now that the k + g − 2 strands which do not intersect do not

move on an interval (s0 − ε, s0 + ε) (we do not lose generality since we are
just reparametrising the capping). This condition implies that Im(d(s0,t0)u) ⊂
T(u(s0,t0))Sym2(Σg,p) (it is implicit in the notation that u(s0, t0) ∈ ∆2). Now,
choose a complex chart around u(s0, t0) adapted to Sym2(Σg,p): such a chart
maps Sym2(Σg,p) locally to C2 × {0}k+g−2 and Tu(s0,t0)∆ also splits:

Tu(s0,t0)∆
∼= V ⊕ Ck+g−1

where V is a complex line in C2 (we have Ck+g−1 as second factor because the
other k + g − 1 coordinates may change as they wish, it won’t change the fact
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that the point is in the diagonal because of the first two coordinates). Therefore,
in order to compute the sign of the intersection, we are led to consider the
determinant of the real matrix

M :=



v w x y 0 · · · · · · · · · 0
0 · · · · · · 0 1 0 · · · · · · 0
...

... 0 1 0 · · · 0
...

...
...

. . . . . .
...

...
...

...
. . . 0

0 · · · · · · 0 0 · · · · · · 0 1


(2.13)

which is a block matrix. Here v, w ∈ R4 are a real basis of Im(d(s0,t0)u), and
x, y ∈ R4 are similarly a real basis of V . Clearly

det(M) = det(v, w, x, y) (2.14)

which is what we wanted to show.

Definition 2.3.4. Let (s, t) ∈ [0, 1]2. We say that a capping u has an elemen-
tary intersection at (s, t) with ∆ if u(s, t) ∈ ∆ and if there exist charts as those
defined in Lemma 2.3.3 around u(s, t) such that u2 coincides with the roots of
the complex polynomial

X2 − (s+ it)

Lemma 2.3.5. Elementary intersections between two strands are transverse.

Proof. We will start by considering a homotopy γ : [−1, 1]s×[−1, 1]t → Sym2(C)
between two braids γ− and γ+. There is a diffeomorphism φ : C2 → Sym2(C)
which maps (a, b) ∈ C2 to the pair of roots of the degree 2 polynomialX2−aX+b
(its inverse being given by φ−1([x−, x+]) = (x− + x+, x−x+)). Through this
diffeomorphism, the diagonal ∆ ⊂ Sym2(C) corresponds to the set

φ−1(∆) =
{
(2x, x2), x ∈ C

}
=

{(
a,
a2

4

)
, a ∈ C

}
whose tangent space at (a, a

2

4 ) is the complex vector subspace generated by
(1, a2 ), i.e. the real vector subspace generated by (1, a2 ) and (i, ia2 ).

Let (a(s, t), b(s, t)) := φ−1(γ(s, t)). Assume that γ intersects the diagonal
at (s, t) = (0, 0). Then, the intersection is transverse if and only if the vectors(

1,
a(0, 0)

2

)
,

(
i,
ia(0, 0)

2

)
, (∂sa(0, 0), ∂sb(0, 0)) and (∂ta(0, 0), ∂tb(0, 0))

generate the whole space C2 as a real vector space.
In particular, consider the case where γ(s, t) is the pair of square roots of

s+it. Then, γ intersects the diagonal at (0, 0), and (a(s, t), b(s, t)) = (0,−s−it).
Therefore, we get that the intersection is transverse if and only if the vectors
(1, 0), (i, 0), (0,−1), (0,−i) generate C2. Since this is true, we have transversality
of the intersection.
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t

t 7→ [a, b](−0.01, t) t 7→ [a, b](0, t) t 7→ [a, b](0.01, t)

Figure 2.3: The homotopy γ(s, t)

s
t 7→ γ(−0.01, t) t 7→ γ(0, t) t 7→ γ(−0.01, t)

Figure 2.4: The homotopy γ(s, t) as seen on C.

Remark 2.3.6. From the proof we see that the sign of the intersection we
studied above as local model is positive.

Remark 2.3.7. The homotopy s + it 7→
√
(s+ it) ∈ Sym2C does not lift to a

function to C2. If we, in more generality, suppose that an intersection is trans-
verse, the capping cannot be lifted to C2. Assume in fact that an intersection
counting towards [u] ·∆ does lift to C2 (we take k = 2 in light of Lemma 2.3.3).
Then it cannot be transverse: up to time-translation, assume the intersection
appears at (s, t) = (0, 0). Define

(γ1, γ2) : (−ε, ε)× (−ε, ε) → C2

such that if π : C2 → Sym2C is the quotient projection, we locally have

π ◦ (γ1, γ2) = u

Then (γ1, γ2)(0, 0) ∈ π−1(∆). The differential of π being 0 there, so is the
differential of u. This proves that the intersection of u with ∆ at (0, 0) is not
transverse.

2.3.3 The braid type function

In this Section we discuss the good definition and the image of the braid-type
function b.
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In the introduction it was claimed that b was a well defined function from
Hamc(Σg,p). To prove it, we need to remark that b does not depend on the
Hamiltonian isotopy one chooses. This is true if, for instance, π1(Hamc(Σg,p)) =
0, which we proved in Lemma 1.2.8. In fact, since in such a case any two
Hamiltonian isotopies are homotopic relative endpoints between isotopies, we
may deform one Hamiltonian path into the other keeping strands from crossing.
Such a deformation then provides a braid isotopy between the images of the two
Hamiltonian isotopies, and b is well defined.

We aim to describe the braid type of a Hamiltonian diffeomorphism preserv-
ing a given premonotone Lagrangian configuration L in Σg,p. We refer to the
description of Bk,g,p provided in Section 1.1. Consider the subgroup of Bk,g,p
generated by (σi)i=1,...,k−1, (aj)j=1,...,g, (b

−1
j ajbj)j=1,...,g

and (zl)l=1,...,p−1 only
(no bj alone is present), with the restrictions of Bellingeri’s relations. For clar-
ity, we remark that the σi we consider are those describing exchanges between
contractible components of the link. Denote this subgroup by BL.

Remark 2.3.8. Even though we have p punctures, the associated generators
are only p − 1. As remarked in [10], one may express a single loop zp around
the last puncture using the relation

[a1, b
−1
1 ] · · · [ag, b−1

g ] = σ−1
1 σ−1

2 · · ·σ−2
k−1 · · ·σ

−1
2 σ−1

1 z−1
1 · · · z−1

p

Lemma 2.3.9. Let us consider the group homomorphism

b : HamL,c(Σg) → Bk,g,p (2.15)

Its image is precisely BL.

Proof. We are going to describe the group BL as the fundamental group of
the k-th configuration space of the surface Σ̃g,p, which we obtain by removing
tubular neighbourhoods of the curves Lk+1, . . . , Lk+g from Σg,p. Now, Σ̃g,p is
a punctured sphere, with 2g + p punctures. Its braid group is described in [11,
Theorem 2.1]: it has the k − 1 generators corresponding to moves which take
place in a disc on the surface, and p+ 2g− 1 corresponding to non contractible
loops around punctures.

Let us show that we may identify the image of b with this fundamental
group. Let φ ∈ HamL,c(Σg,p), and let Lj be any non contractible component of
L. Since it cannot be displaced by any Hamiltonian diffeomorphism, if (φt) is
any homotopy between the identity of Ham and φ, Lj satisfies

Lj ∩ φt(Lj) ̸= ∅

This implies that there is a loop in Hamc(Σg,p) based at the identity, t 7→ ψt,
such that for all t and for any non contractible component Lj one has

ψtφt(Lj) = Lj
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αi

βi αi

βi

ζ1 ζp

Lk+i

L1 Lk

b−1
i aibi

Figure 2.5: The generator b−1
i aibi

Since the circles cannot intersect during this isotopy, and since b does not depend
on the particular isotopy one chooses without loss of generality (up to shrink-
ing the tubular neighbourhoods we take off to produce Σ̃g,p) the braid b(φ) is
represented by a braid entirely contained in Σ̃g,p. Furthermore, choosing such
an isotopy makes it clear that no contractible circle may wind about the base
point on a non contractible component: this bounds the number of σ-generators
to k − 1 (only exchanges between contractible circles are allowed). All of this
proves that the image of b is contained in π1(Conf

k(Σ̃g,p)), which is what we
wanted. To prove equality, we just need to be able to represent all generators
of BL,k as images of b. This is readily done: given any σi, we may consider a
disc containing L1 and Li and apply a half rotation. In the case of any zi (loop
around a puncture) we may use an annulus with centre at the puncture, and a
full rotation on it.

We end this proof showing that the generators above, elements in Bk,g,p,
are in fact the images of the generators of π1(Confk(Σ̃g,p)) under the inclusion
morphism. In fact, it is easy to see that the σi’s in Bk,g,p correspond to the
half-twists in π1(Confk(Σ̃g,p)), and that the turns around the punctures in Σ̃g,p
are sent by the inclusion to turns around the punctures in Σg,p (the zj ’s) and
turns around the handles (the ai’s and b−1

i aibi’s) (see Figure 2.5 for a picture
of b−1

i aibi).

2.4 Proof of the main results

As the title says, in this Section we prove the main results of the Chapter. A
sketch of the proof is the following: consider φ ∈ HamL(Σg,p), with L pre-
monotone. We symplectically embed the surface with boundary Σg,p into two
closed surfaces, gluing discs of different areas to the boundary components.
This operation yields two different Floer complexes, which turn out to be chain-
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isomorphic; the isomorphism however does not respect the action filtration. We
compute the action difference, and relate it to the braid type of the Hamiltonian
diffeomorphism φ. In Section 2.4.1 we construct the chain isomorphism and
study its effects on spectral invariants, while in Section 2.3.2 we finish the proof
connecting the difference of spectral invariants to braids. This difference of
spectral invariants will be what we use in the definition of the functions f(v1,v2)
in Theorem 2.2.3, and the quasimorphisms in Theorem 2.2.6.

2.4.1 Construction of the chain isomorphism
The content of this section comes from [51], but it is adapted to the more general
setting of surfaces with boundary and arbitrary genus.

Let L be a pre-monotone link on Σg,p with k+g components, and let ζ1, ..., ζp
be its boundary components. Gluing discs of area si,j along ζj for i = 1, 2,
j = 1, ..., p gives rise to two embeddings of Σg,p into a closed surface of area
1 + si, i = 1, 2, denoted Σg(1 + si), where

si = si,1 + ...+ si,p ∈ (0, (k + 1)A− 1)

In the following, by vi we denote the vector

vi := (si,1, . . . , si,p)

and the set of possible values v1, v2 may take is

V := {(s1, ..., sp) ∈ (R≥0)
p|s1 + ...+ sp ≤ (k + 1)A− 1}

We write jv : Σg,p → Σg(1 + s) for the symplectic embedding we obtain as
just described. For any φ ∈ Hamc(Σg,p) denote by φv ∈ Ham(Σg(1 + s)) the
obvious extension by the identity, Lv := jv(L) the corresponding monotone link
on Σg(1+ s), and by ηs the associated monotonicity constant. If φ is generated
by a Hamiltonian H ∈ C∞

c (Σg,p×S1;R), let Hv be the Hamiltonian generating
φv coinciding with H on the image of jv. In this Section we assume H to be non
degenerate: it cannot be the case of course if φ ∈ HamL(Σg,p, ω), so later we
shall have to consider small perturbations to make the intersections transverse.

Fix a diffeomorphism of the surface

dv2v1 : Σg(1 + v1) → Σg(1 + v2)

and assume that for all j, v1,j , v2,j > 0. We require that the following diagram
commute:

Σg(1 + s1) Σg(1 + s2)

D

dv2v1

jv1
jv2

In particular, since jvi is symplectic for i = 1, 2, by the commutativity of the
above diagram we have that dv2v1 is symplectic between the images of D in the two
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different spheres and globally preserves the orientations given by the symplectic
forms. The map dv2v1 induces a bijective correspondence between the Hamiltonian
paths1 which, after being capped, generate the Floer complexes CF (Hv1 , Lv1)
and CF (Hv2 , Lv2) for any non degenerate φ ∈ Hamc(Σg,p). We would like to use
ψv2v1 := Symk(dv2v1) to define a chain-isomorphism, and the first step to do so is
checking that ψv2v1 commutes with the Z-action on both sides given by recapping.
Before stating the lemma, recall that ψv2v1 is smooth because it is induced by a
biholomorphism Σg(1+s1) → Σg(1+s2), hence biholomorphic itself (after fixing
the complex structure on Σg(1 + s1), the other one is its pushforward by dv2v1 ,
and it is integrable by Newlander–Nirenberg Theorem [48, Appendix E]). Two
ways to see it for instance are applying the Removable Singularity Theorem on
the diagonal (where the function may not be holomorphic), or checking by hand
using Cauchy’s Integral Formula that, even when a point of Symk(Σg) has non
trivial isotropy, ψv2v1 may be developed in a power series using the holomorphic
coordinates of the symmetric product.

We prove now that ψv2v1 determines a bijection Ψv2v1 between capping classes.

Lemma 2.4.1. If ŷ, ŷ′ are two equivalent cappings for an intersection point
y, then ψv2v1 (ŷ), ψ

v2
v1 (ŷ

′) are two equivalent cappings for the intersection point
ψv2v1 (y). Moreover, the associated Z-action induces a translation by multiples of
λ of the action for both CF (Hv1 , Lv1) and CF (Hv2 , Lv2).

Proof. Start by remarking that ψv2v1 induces an identification between the rel-
ative homology groups: if Xvi denotes the quotient Σg(1 + si)

k/Sk as above,
and Lvi := Symk(jv1)(Symk(L)) i = 1, 2, then

ψv2v1 ∗ : H2(Xv1 , Lv1 ;Z)
∼−→ H2(Xs2 , Lv2 ;Z)

The restriction of ψv2v1 to the image of the Hurewicz morphismHD
2 (Xv1 , Lv1 ;Z) ≤

H2(Xv1 , Lv1 ;Z) is still an isomorphism. To check that the equivalence classes
of cappings are respected it suffices to check that given two classes u, u′ in
HD

2 (Xv1 , Lv1 ;Z) satisfying

⟨ωXvi
, u⟩+ ηv1 [u] ·∆s1 = ⟨ωXvi

, u′⟩+ ηv1 [u
′] ·∆s1

then

⟨ωXs2
, ψv2v1 ∗u⟩+ ηv2 [ψ

v2
v1 ∗u] ·∆s2 = ⟨ωXs2

, ψv2v1 ∗u
′⟩+ ηv2 [ψ

v2
v1 ∗u

′] ·∆s2

Now, Lemma 4.19 from [21] shows that

⟨ωXvi
, u⟩+ ηv1 [u] ·∆s1 =

λ

2
µ(u)

for each u ∈ HD
2 (Xv1 , Lv1 ;Z) where µ ∈ H2(Xv1 , Lv1 ;Z) is the Maslov class;

an analogous statement holds for classes in HD
2 (Xs2 , Lv2 ;Z). In light of this, ŷ

1This is due to the commutativity of the diagram above and the fact that the extensions
of the Hamiltonian are 0 outside small neighbourhoods of the images jvi (Σg,p).
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and ŷ′ are equivalent cappings if and only if their images through the Hurewicz
morphism, denoted u and u′ respectively, satisfy

µ(u) = µ(u′)

An analogous result is true for ψv2v1u and ψv2v1u
′. To prove the first statement it

is now enough to show that

µ(u) = µ(ψv2v1 ∗u)

and the analogous conclusion for u′. These are true because ψv2v1 is a biholomor-
phism, and thus preserves the Maslov indices (see [49], Theorem C.3.7).

To prove the second statement, we need to prove that the generators of
HD(Xvi , Lvi ;Z) act the same way on the action for i = 1, 2. Notice that in
both cases λ1 = λ2 = A =: λ the area of a disk bounded by a component of
the lagrangian link. Now, capping by one of the generators of HD(Xvi , Lvi ;Z)
shifts the action by λ = A in both cases since the generators have Maslov index
2, see Corollary 4.8 and Lemma 4.19 in [21].

Applying the above Lemma to ψv1v2 = (ψv2v1 )
−1 we prove that the mapΨv2v1

defined on the generators of the complexes by

[ŷ] 7→ [ψv2v1 ◦ ŷ]

is a bijection between capping classes which extends linearly to a chain complex
isomorphism.

Fix an ω-tame almost complex structure on Σg(1 + s1) and push it forward
by ψv2v1 . Let H be a Hamiltonian generating φ, and ψv2v1 be the group morphism
induced by ψv2v1 .

Lemma 2.4.2. Let φ : Σg,p → Σg,p be a Hamiltonian diffeomorphism of the
symplectic surface such that φ(L) ⋔ L. Then ψv2v1 is a chain isomorphism, and
in particular HF (Hv1 , Lv1) ≃ HF (Hv2 , Lv2).

Proof. Let us denote by ∂vi , i = 1, 2, the differentials of the two complexes: we
want to prove that

∂v2 ◦ ψv2v1 = ψv2v1 ◦ ∂v1

To achieve the transversality in the symmetric product one needs to define the
Floer complex we look at a class of almost complex structures which coincide
with the one induced by the quotient projection near the diagonal: for i = 1, 2
let

Jvi(∆)

be the set of almost complex structures on Symk(Σg(1+si)) which coincide with
JsiXvi

on a neighbourhood of the fat diagonal ∆ ⊂ Xvi , and elsewhere they are
tamed by ωXvi

. Here we use ωXvi
and JsiXvi

for the natural (singular) symplectic
form and almost complex structure on the quotient of the remarks above.
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Let now u : R× S1 → Symk(Σg(1+ s1)) be a smooth function satisfying the
conditions 

u(s, 0) ∈ Symk(φv1)(Symk(L))

u(s, 1) ∈ Symk(jv1)(Symk(L))

lims→−∞ u(s, t) = jv1y0

lims→+∞ u(s, t) = jv1y1

∂su(s, t) + Jv1t (∂tu(s, t)−XHv1
u(s, t)) = 0

(2.16)

where Jv1 ∈ Jv1(∆) is an almost complex structure on Σg(1 + s1). Endow
Σg(1+s2) with the almost complex structure Jv2 := ψv2v1 ∗J

v1 (the push-forward
by ψv2v1 of Jv1), so that by definition the differential of ψv2v1 is complex linear.

We want then to show that Jv2 thus defined is an element of Jv2(∆): we
only need to show that Jv2 is tamed by ωXs2

if Jv1 is tamed by ωXvi
. Tameness

being an open condition, and since the natural complex structure is tamed by
the natural symplectic structure, let us assume for the moment that Jv1 is close
enough to Jv1Xvi

. The pushforward ψv2v1 ∗ defines a homeomorphism between the
spaces of almost complex structures on Xvi and Xs2 , and sends by definition
Jv1Xvi

to Jv2Xs2
: this implies that if Jv1 is close enough to Jv1Xs2

then Jv2 :=

(ψv2v1 )∗J
v1 is close to Jv2Xs2

and is tame: Jv2 ∈ Jv2(∆).
A bijective correspondence between holomorphic curves u1 : D → Xvi and

u2 : D → Xs2 is given by the post-composition with ψv2v1 (or its inverse), since
ψv2v1 conjugates the Hamiltonian vector fields on Xv1 and Xv2 . We are left to
show that the differentials are defined at the same time, i.e. that if Jv1 achieves
the transversality one needs for the good definition of the Floer complex, then
so does Jv2 . As mentioned above we have a well defined homeomorphism

(ψv2v1 )∗ : U1 ∼−→ U2

where U i ⊂ Jvi(∆) are neighbourhoods of the natural almost complex struc-
tures; the inverse is given by the pullback via ψv2v1 . If Jvi,τ (∆) ⊂ Jvi(∆) is
the Baire set of almost complex structures giving good definition for the Floer
complex (proof in [21], Section 5), let us prove that Jv1,τ (∆) ∩ (ψv2v1 )

∗(U2 ∩
Jv2,τ (∆)) ̸= ∅. If it is the case, we may choose Jv1 in it, and push it forward
to Jv2 , so both Floer complexes can be defined with these choices. Now, the
intersection cannot be empty: since Jv2,τ (∆) is generic in Jv2(∆), U2∩Jv2,τ (∆)
is a Baire set in U2, and (ψv2v1 )

∗(U2 ∩ Jv2,τ (∆)) is Baire in U1. Intersecting the
latter with Jv1,τ (∆) gives a Baire set in U1, which is in particular not empty.

As for the orientation of moduli spaces, one can arbitrarily define a spin
structure on Symk(L) already on the disk, that which gives spin structures
on on Symk(Lv2) and Symk(Lv1) by pushforward by jvi , and then these two
correspond by pushforward by ψv2v1 since ψv2v1 preserves the orientation of the
Lagrangian link.

Remark 2.4.3. The isomorphism between the Floer complexes in Lemma 2.4.2
is an isomorphism of persistence modules only up to shift: what we are going
to do later essentially amounts to computing how much it fails to preserve the
action filtration.
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Let Qψv2v1 : QH(Symk(Lv1);Z) → QH(Symk(Lv2);Z) be the morphism on
quantum homology induced by ψv2v1 .

Lemma 2.4.4. Let PSS(vi) : QH(Symk(Lvi);Z) → HF (φsi , Lvi ;Z) be the
PSS isomorphisms for i = 1, 2. Then the following diagram commutes:

QH(Symk(Lv1);Z) QH(Symk(Lv2);Z)

HF (Hv1 , Lv1 ;Z) HF (Hv2 , Lv2 ;Z)

PSS(v1)

Qψv2
v1

PSS(v2)

ψv2
v1

Proof. The matters of definitions of the PSS isomorphism and its bijectivity in
the case of symmetric products are addressed in [21], Section 6.2: modifying
the (singular) Hamiltonian Symk(H) near the diagonal in fact one can find a
filtered chain isomorphic complex for which the standard proofs work. In the
following we assume that this operation has been done.

As in the proof for ψv2v1 , we need to check that ψv2v1 induces a bijective corre-
spondence of generators of the chain complexes and of moduli spaces defining the
differential. This is immediately clear for Qψv2v1 : gradient lines on Symk(Lv1) are
mapped to gradient lines if one fixes a Morse-Smale pair and then pushes it for-
ward, and to holomorphic discs in the pearly model for QC(Symk(Lv1)) we make
bijectively correspond holomorphic discs in the pearly model forQC(Symk(Lv2)).
As for the orientation of the involved moduli spaces, the same remark as above
holds.

2.4.2 Filtration shifts and braids

What follows is material from the joint work with Trifa [52].
We now study the action shift given by the chain isomorphism Ψv2v1 , and

relate it to the braid type of the Hamiltonian diffeomorphism. We assume that
φ generated by H is in fact a small perturbation of an element in HamL(Σg,p, ω).
Its braid type is in particular still well defined.

Lemma 2.4.5. The difference of action AHv1
([ŷ]) − AHv2

([Ψv2v1 ŷ]) does not
depend on the choice of the generator [ŷ].

Proof. Start by fixing a generator [ŷ]. Since Hvi , i = 1, 2 are supported in
Σg,p, we get that yi are paths in Symk+g(Σg,p). The biholomorphism between
Σg(1 + s1) and Σg(1 + s2) restricts to the identity on Σg,p, so the two paths y
and ψv2v1y coincide, and Hv1 |y = Hv2 |ψv2

v1
y = H|y. Therefore, using the formula

for the action, the terms containing the integral of the Hamiltonian will cancel
out, leaving us with:

AHv1
([ŷ])−AHv2

([Ψv2v1 ŷ]) = ηv2 [Ψ
v2
v1 ŷ] ·∆− ηv1 [ŷ] ·∆+ ωv2([Ψ

v2
v1 ŷ])− ωv1([ŷ])
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We first show that this quantity does not depend on the choice of capping for
the path y. Let [ŷ′] be another capping. We want to show that

ηv2([Ψ
v2
v1 ŷ]#Ψv2v1 [ŷ

′]−1) ·∆+ωv2([Ψ
v2
v1 ŷ]#Ψv2v1 [ŷ

′]−1)−
−
(
ηv1([ŷ]#[ŷ′]−1) ·∆+ ωv1([ŷ]#[ŷ′]−1)

)
= 0

Since [ŷ]#[ŷ′]−1 and Ψv2v1 [ŷ]#Ψv2v1 [ŷ
′]−1 are homotopies between x and itself, it is

in fact a disc with boundary on SymL, so by monotonicity (Proposition 2.3.1),

ηv1([ŷ]#[ŷ′]−1) ·∆+ ωv1([ŷ]#[ŷ′]−1) =
λ

2
µ([ŷ]#[ŷ′]−1)

ηv2(Ψ
v2
v1 [ŷ]#Ψv2v1 [ŷ

′]−1) ·∆+ ωv2(Ψ
v2
v1 [ŷ]#Ψv2v1 [ŷ

′]−1) =
λ

2
µ(Ψv2v1 [ŷ]#Ψv2v1 [ŷ

′]−1)

Since the Maslov index is preserved by Ψv2v1 , the difference above vanishes, which
proves that the difference of action does not depend on the choice of capping.
Now we show that it does not depend on the path y either. If y′ is another
trajectory of Hv1 between SymLv1 and itself, then we can define a capping for
y′ by choosing any capping for y and concatenating it with any homotopy [w]
from y to y′. Since we showed that the action difference does not depend on
the capping, it is enough to find a single homotopy [w] for which

ηv2([ψ
v2
v1w]) ·∆+ ωv2([ψ

v2
v1w])− (ηv1([w]) ·∆+ ωv1([w])) = 0

Such a w exists: we can first find a homotopy sliding the end points of y and y′
inside the circles so that they coincide (and therefore define braids), and then
we can take a homotopy inside Symk+g(Σg,p) that does not intersect ∆, because
y and y′ have the same braid type.

The previous Lemma implies that for any φ ∈ HamL,c(Σg,p), and any choice
of generator [ŷ], we have cLv1

(φ)− cLv2
(φ) = 1

k+g (AHv1
([ŷ])−AHv2

([Ψv2v1 ŷ])) as
in [51, Lemma 3.6].

Definition 2.4.6. We define fv1,v2 : Hamc(Σg,p) → R as

fv1,v2(φ) := cLv1
(φ)− cLv2

(φ) =
1

k + g
(AHv1

([ŷ])−AHv2
(Ψv2v1 [ŷ]))

Moreover, we have:

Lemma 2.4.7. The map fv1,v2 : HamL,c(Σg,p) → R is a group homomorphism,
which factorises over b : HamL,c(Σg,p) → BL, i.e. there exists a group homo-
morphism fv1,v2 : BL → R such that fv1,v2 = fv1,v2 ◦ b.

Proof. Let φ, ψ be in HamL,c(Σg,p). Let H (resp. H ′) be a Hamiltonian
supported inside Σg,p generating φ (resp. ψ). Let [ŷ] (resp. [ŷ′]) be a gen-
erator of CF ∗(Symk+gHv1 , SymLv1) (resp. CF ∗(Symk+gH ′

v1 , SymLv1). Let
z : [0, 1] → Symk+gΣg,p be a trajectory of H#H ′ from SymL to itself. We want
to construct a capping ẑ : [0, 1]× [0, 1] → Symk+gΣg(1 + s1) from the constant
path x to z, using the cappings ŷ and ŷ′. We define it as follows (see Fig. 2.6):
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⊂ Sym(L)

⊂ Sym(L)

⊂ Sym(L)

z

x

z(1)

z(0)

⊂ Symk+g(Σg,p) \∆

ŷ1

ŷ′1y′

y

Figure 2.6: The capping ẑ1
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• On [0, 12 ]× [0, 15 ]:

– ẑ([0, 12 ]× [0, 15 ]) ⊂ SymLv1
– for 0 ≤ t ≤ 1

5 , ẑ(0, t) = x

– ẑ( 12 , 0) = z(0)

– for 0 ≤ s ≤ 1
2 , ẑ(s, 15 ) = ŷ(2s, 0)

(Such a homotopy exists because SymLv1 is path-connected, it is in fact
isotopic to a Clifford torus, cf. [21])

• On [0, 12 ]× [ 15 ,
2
5 ], ẑ(s, t) = ŷ(2s, 5t− 1)

• On [0, 12 ]× [ 25 ,
3
5 ]:

– ẑ([0, 12 ]× [ 25 ,
3
5 ]) ⊂ SymLv1

– for 2
5 ≤ t ≤ 3

5 , ẑ(0, t) = x

– for 0 ≤ s ≤ 1
2 , ẑ(s, 25 ) = ŷ(2s, 1)

– for 0 ≤ s ≤ 1
2 , ẑ(s, 35 ) = ŷ′(2s, 0)

• On [0, 12 ]× [ 35 ,
4
5 ], ẑ(s, t) = ŷ′(2s, 5t− 3)

• On [0, 12 ]× [ 45 , 1]:

– ẑ([0, 12 ]× [ 45 , 1]) ⊂ SymLv1
– for 4

5 ≤ t ≤ 1, ẑ(0, t) = x

– for 0 ≤ s ≤ 1
2 , ẑ(s, 45 ) = ŷ′(2s, 1)

– ẑ( 12 , 1) = z(1)

• On [ 12 , 1]×[0, 1], ẑ is a homotopy of braids between ẑ( 12 , ·) and z, contained
in Symk+g(Σg,p). Indeed, since b is a group homomorphism, those two
paths are isotopic as braids.

Now, the capping ẑ consists of a concatenation of ŷ, ŷ′, homotopies contained
in SymLv1 , and a braid isotopy contained in Symk+g(Σg,p). Homotopies con-
tained in Symk+g(Σg,p) do not contribute to the difference of symplectic area,
and as SymLv1 is away from the diagonal, and (by definition) a braid isotopy
does not cross the diagonal, the only contribution to the difference of action
comes from ŷ and ŷ′. Since the intersection number and the symplectic area are
additive, we get that fv1,v2(φψ) = fv1,v2(φ) + fv1,v2(ψ). Moreover, since braid
isotopies do not contribute to the action difference, fv1,v2(φ) only depends on
the braid type of φ.

Therefore, it is enough to compute the value of fv1,v2 on the generators of
BL,k to express fv1,v2(φ).
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αi

βi αi

βi

ζ1 ζpL1 Lk

Lk+i

αi

βi αi

βi

ζ1 ζpL1 Lk

Lk+i

ai

αi

βi αi

βi

ζ1 ζpL1 Lk

Lk+i

Figure 2.7: Homotopy between ai and the constant path

Lemma 2.4.8. The values of fv1,v2 are the following:

fv1,v2(ai) = 2
ηv2 − ηv1
k + g

= −fv1,v2(b−1
i aibi), fv1,v2(σj) =

ηv2 − ηv1
k + g

,

fv1,v2(zj) =
s2,j − s1,j
k + g

= −2(ηv2 − ηv1)
k + 2g − 1

k + g

s2,j − s1,j
s2 − s1

Proof. To do these computations, according to Lemma 2.4.5 it is enough to
produce explicit homotopies between the reference path x (which is a trivial
braid) and the braid for which we know how to compute the action difference.
For ai, b−1

i aibi and σj , we exhibit homotopies contained in Σg,p, so that the only
contribution to the action difference comes from intersections with the diagonal.
We also choose our homotopies so that the intersections with the diagonal are
transverse. To be sure of their transversality, we make use the content of Section
2.3.2. We show there that the intersections we count here are transverse, and
give their signs.

The result comes from counting such intersections (with sign) on Figures 2.7,
2.8 and 2.9. All the intersections appearing in those homotopies are modelled
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αi

βi αi

βi

ζ1 ζpL1 Lk

Lk+i
αi

βi αi

βi

ζ1 ζpL1 Lk

Lk+i

αi

βi αi

βi

ζ1 ζpL1 Lk

Lk+i

Figure 2.8: Homotopy between b−1
i aibi and the constant path
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αi

βi αi

βi

ζ1 ζp

Lk+i

σj

L1 Lj Lj+1

Lk

αi

βi αi

βi

ζ1 ζp

Lk+i

L1 Lj Lj+1

Lk

αi

βi αi

βi

ζ1 ζp

Lk+i

L1 Lj Lj+1

Lk

Figure 2.9: Homotopy between σj and the constant path
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on the example of Figure 2.4, therefore we know they are transverse and can
compute their signs.

For zj , the braid becomes trivial after embedding Σg,p into Σg(1 + si), and
we can choose an isotopy to the trivial braid (without crossing) which sweeps
the disc glued to the boundary component ζj . Therefore, the only contribution
to the action difference comes from the difference of symplectic area between
the two embeddings:

fv1,v2(zj) =
s2,j − s1,j
k + g

By the monotonicity property applied to the only non contractible connected
component of Σg(1 + si), we have

A = 1 + si − kA+ 2ηvi(k + 2g − 1)

and therefore ηv2 − ηv1 = s1−s2
2(k+2g−1) , which implies that

fv1,v2(zj) = −2(ηv2 − ηv1)
k + 2g − 1

k + g

s2,j − s1,j
s2 − s1

Remark 2.4.9. With this last expression for fv1,v2(zj), it is easy to check that
the values of fv1,v2 are consistent with the relation of Remark 2.3.8.

Remark 2.4.10. The reader might be surprised by the fact that

f(v1,v2)(biaib
−1
i ) ̸= f(v1,v2)(ai)

Now, remark that the f(v1,v2) are not defined on the bi, which indeed are not
elements in BL.

Remark 2.4.11. The reader will see that the intersection numbers we compute
for the generators σj here is he opposite of what we find in [52], the reason being
that the σj in [52] correspond to a clockwise half-twist, while here the half-twist
is counterclockwise.

By the Hofer-Lipschitz property of link spectral invariants, we have that for
all φ ∈ HamL,c(Σg,p), and for any choice of (v1, v2) = (si,j)i=1,2;1≤j≤p ∈ V ×V :

∥φ∥ ≥ 1

2
|fv1,v2(φ)|

To get the best estimate, we compute the maximum of |f(si,j)(φ)| over the
choice of (v1, v2). We have

(k + g)fv1,v2(φ) =
s1 − s2

2(k + 2g − 1)
(2kgen − kσ) +

p−1∑
j=1

kj(s2,j − s1,j)

where we have decomposed b(φ) as a product of the generators ai, (b−1
i aibi)

−1,
σj and zj , and kgen is the sum of the exponents of all the ai and (b−1

i aibi)
−1 in
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this decomposition; kσ is the sum of the exponents of all the σj , and kj is the
sum of the exponents of zj (according to the relations between the generators,
kgen, kσ and the kj do not depend on the decomposition of b(φ) as a product
of generators). Observe that this expression is homogeneous in (v1, v2), i.e.
|fκv1,κv2(φ)| = |κ||fv1,v2(φ)|. Therefore, the maximum has to be attained when
s1 or s2 is maximal, i.e. equal to (k+ 1)A− 1. Since permuting v1 and v2 does
not change |fv1,v2(φ)|, we can assume that 0 ≤ s1 ≤ s2 = (k + 1)A − 1. Let
kmax := max{kj}, kmin := min{kj}, and let jmax and jmin be indices such that
kjmax

= kmax, and kjmin
= kmin. Then,

(k + g)fv1,v2(φ) ≤
s1 − s2

2(k + 2g − 1)
(2kgen − kσ) +

∑
s2,j−s1,j≥0

kmax(s2,j − s1,j)+

+
∑

s2,j−s1,j<0

kmin(s2,j − s1,j) ≤
s1 − s2

2(k + 2g − 1)
(2kgen − kσ) + s2kmax − s1kmin

= s2

(
kmax −

2kgen − kσ
2(k + 2g − 1)

)
+ s1

(
2kgen − kσ

2(k + 2g − 1)
− kmin

)
with equality when s1,j = δj,jmin

s1 and s2,j = δj,jmax
s2.

Similarly,

(k + g)fv1,v2(φ) ≥
s1 − s2

2(k + 2g − 1)
(2kgen − kσ) +

∑
s2,j−s1,j≥0

kmin(s2,j − s1,j)+

+
∑

s2,j−s1,j<0

kmax(s2,j − s1,j) ≥
s1 − s2

2(k + 2g − 1)
(2kgen − kσ) + s2kmin − s1kmax

= s2

(
kmin − 2kgen − kσ

2(k + 2g − 1)

)
+ s1

(
2kgen − kσ

2(k + 2g − 1)
− kmax

)
with equality when s1,j = δj,jmax

s1 and s2,j = δj,jmin
s2. Since those expressions

are linear in s1, the extremal values are attained for s1 = 0 or s1 = s2. Set:

R = kmax − kmin, S = kmax −
2kgen − kσ

2(k + 2g − 1)
, T =

2kgen − kσ
2(k + 2g − 1)

− kmin

In the end, we get:

max
(v1,v2)∈V 2

|fv1,v2(φ)| =
(k + 1)A− 1

k + g
max {R,S, T} (2.17)

and therefore

∥φ∥ ≥ (k + 1)A− 1

2(k + g)
max {R,S, T}

This ends the proof of Theorem 2.2.3.
The proof of Theorem 2.2.6 is very simple now. Remark first that the func-

tion fv1,v2 if Σg,p = D in fact depends on only one pair of parameters, s1 and
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s2, so we are going to adjust the notation accordingly. From Lemma 2.4.8 we
find that

fs1,s2(σj) = −ηs2 − ηs1
k

and taking optimal s1 and s2 yields

f0,(k+1)λ−1(σj) =
1

2k

(k + 1)λ− 1

k − 1

as anticipated in Section 2.2. Since fs1,s2 is a homomorphism, we may write,
for any φ ∈ HamL(D), that

f0,(k+1)λ−1(φ) =
1

k

(k + 1)λ− 1

k − 1
lk(b(φ))

since by definition lk(σj) = 1 for all j. We now homogenise:

Qk(φ) := lim
n→∞

f0,(k+1)λ−1(φ
n)

n

The right hand side is now a homogeneous quasimorphism on Hamc(D) (dif-
ference of two homogeneous quasimorphisms), and since f0,(k+1)λ−1 is in fact a
homomorphism of groups when restricted to HamL(D), we finish the proof of
Theorem 2.2.6:

∀φ ∈ HamL(D), Qk(φ) := lim
n→∞

f0,(k+1)λ−1(φ
n)

n
=

= f0,(k+1)λ−1(φ) =
1

2k

(k + 1)λ− 1

k − 1
lk(b(φ))

2.5 Hofer norms for braid groups on surfaces with
boundary

Let us start this Section proving that the quantities ∥·∥L are at least pseudonorms
on the images of b.

Lemma 2.5.1. For all g1, g2 ∈ BL, ∥g1∥ = ∥g−1
1 ∥ and ∥g1g2∥ ≤ ∥g1∥+ ∥g2∥.

Proof. The first point is obvious since for all φ ∈ Hamc(Σg,p, ω), ∥φ∥ = ∥φ−1∥
and b(φ) = b(φ−1)−1. For the second one,

∥g1g2∥L = inf
φ∈HamL(Σg,p,ω),b(φ)=g1g2

∥φ∥ ≤ inf
φi,∈HamL(Σg,p,ω),b(φi)=gi

∥φ1φ2∥

and applying triangular inequality

∥g1g2∥L ≤ ∥φ1∥+ ∥φ2∥, ∀φi ∈ HamL(Σg,p, ω) with b(φi) = gi

so that taking the infimum first on φ1 and then on φ2 we conclude.
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Now, Chen in [15] proved non degeneracy of the pseudonorms we defined in
[51]. We aim to show how Chen’s proof may be adapted to extend his theorem
to:

Theorem 2.5.2. Let L be a pre-monotone link on Σg,p, a compact symplectic
surface of genus g and with p boundary components. Then there exists an ε > 0,
only depending on L , such that if φ,ψ ∈ HamL(Σg,p) are such that dH(φ,ψ) <
ε, then b(φ) = b(ψ).

This theorem in turn implies that the pseudonorms we defined are non de-
generate.

Corollary 2.5.3. If (φi) ⊂ HamL(Σg,p) is a sequence of Hamiltonian diffeo-
morphisms preserving L, and ∥φi∥ → 0, then there exists a positive integer n
such that for every i > n the braid b(φi) is trivial.

We are now going to adapt Chen’s proof to our setting.
In [15], the author considers Hofer-close Hamiltonian diffeomorphisms φ and

ψ. Choosing generating Hamiltonians for both of them and perturbing them
gives rise to the associated Floer complexes, and continuation maps between
them. If the generating Hamiltonians are C0-close, one may furthermore prove
that the pseudoholomorphic curves appearing in the continuation maps do not
intersect the diagonal of the symmetric product, nor the divisor

D = z + Symk−1(S2)

where z is the north pole of the sphere (outside the image of the embedding
D ↪→ S2. The fact that the two Hamiltonians may be chosen to be close of
course follows from the definition of the Hofer norm. One may then use these
pseudoholmorphic curves to produce a braid isotopy between chosen represen-
tatives of b(φ) and b(ψ) using the pseudoholomorphic curves of the continuation
maps.

In our case we wish to prevent pseudoholomorphic curves from intersecting
the diagonal and exiting the surface Σg,p: we glue discs of appropriate areas
to the boundary components, so that L becomes monotone, and consider the
centres ζi, i = 1, . . . , p of the discs we just glued. Define the divisors

Di = ζi + Symk+g−1(Σg) (2.18)

if u : D → Symk(Σg) is a pseudoholomorphic disc with Lagrangian boundary
conditions on the link L, if [u] · Di = 0 for each i then the image does not
leave the image of the embedding Σg,p ↪→ Σg, by positivity of the intersections
between (pseudo)holomorphic submanifolds: the Hamiltonian vector field is in
fact identically zero close to the ζi.

As in [15], we then decompose the differential in the Floer complex as a sum
of contributions, each of them counting pseudoholomorphic discs with fixed in-
tersection number with the diagonal ∆ and the divisors Di. The function ∂00,
counting pseudoholomorphic discs not intersecting ∆ or any of the divisors Di is
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a differential, and we consider the complex (CF (L,H), ∂00). As Chen points out,
it is possible to do the same with continuation maps: if K is a compactly sup-
ported Hamiltonian generating ψ ∈ HamL(Σg,p), let h : CF (L,H) → CF (L,K)
be the continuation map associated to a regular homotopy between H and K.
One may consider h00, obtained from h counting contribution of pseudoholomor-
phic curves not intersecting ∆ or any Di: it turns out to be a chain homotopy
between the two complexes (CF (L,H), ∂00) and (CF (L,K), ∂00). The argu-
ments used in [15] to prove existence of pseudoholomorphic curves contributing
to h00 (assuming that ∥H−K∥(1,∞) is small) carry over to our case: they in fact
either involve local considerations around the Lagrangians, or use monotonicity
of the link which we have now proved (see Proposition 2.3.1). As a consequence,
one may follow through the proof of Theorem 1 in [15], which provides the braid
isotopy we are looking for: such an isotopy is given by gluing a pseudoholomor-
phic curve contributing to h00 with a disc whose image does not leave the torus
Symk+gL. This completes the proof of Theorem 2.5.2.
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Chapter 3

A Filtration in Linking
Numbers

3.1 Introduction
In this chapter we describe one of the main results of this thesis, namely the
existence of a filtration in the Morse theory for a compactly supported Hamil-
tonian diffeomorphism that keep tracks of the linking number of pairs of orbits.
We shall start describing the works of Patrice Le Calvez, and then use his setup
to prove this Theorem. The main tools used here are the classical theory of twist
maps and generating functions; standard references for the field are the works of
Le Calvez themselves [45] and [44], the works of Viterbo (see for instance [73])
and those of Théret [69]. At the end of the chapter we are also going to discuss
how the Morse picture relates to the Floer one: a good technical prerequisite
here is the beginning of the series of papers by Hofer, Wysocki and Zehnder [32],
[31]; one can find a good and succint overview in the work of Connery-Grigg
[19].

The main Theorem may be stated as follows:

Theorem 3.1.1. Let φ be a compactly supported Hamiltonian diffeomorphism
of the plane with its standard symplectic form dx∧ dy. Assume φ is non degen-
erate on the interior of its support. Then for any generating function quadratic
at infinity S : R2 ×Rk → R for φ, there exists a non degenerate quadratic form
Q on Rl, a Riemannian metric g on R2+k+l such that the pair (S⊕Q, g) is both
Palais-Smale and Morse-Smale, and making (an extension of) the function

I : CM(S ⊕Q, g;Z)⊗ CM(S ⊕Q, g;Z) → Z,

I(x⊗ y) :=

{
1
2 lk(γx, γy) x ̸= y

−
⌈
CZ(γx)

2

⌉
x = y

into an increasing filtration of the tensor complex. Here, x and y are critical
points of S ⊕Q, and γx, γy are the associated fixed points of φ.

65
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Moreover, an analogous filtration exists for the Floer complex of φ, and it
behaves well with respect to the pair of pants product.

3.2 Setup: Le Calvez-type generating functions
All the material in this section comes from the works of Le Calvez’s [45], [44].

Let φ ∈ Hamc(D). As Patrice Le Calvez points out in [45], it is possible
to describe φ as a composition of Hamiltonian twist maps of the plane, which
therefore have generating functions in the sense of Section 1.3.1. A way of doing
so is for instance choosing a Hamiltonian isotopy (φt)t∈[0,1] ending at φ, and
cutting it into pieces φ0, . . . , φn−1 so that each φi is C 1-close to the identity anf

φ = φn−1 ◦ · · · ◦ φ0

If the φi are close enough to the identity and

R : R2 → R2, (x, y) 7→ (y,−x) (3.1)

is the positive rotation, then φi ◦R−1 is a twist map (Definition 1.3.5) for all i.
We thus obtain a decomposition of φ as product of twist maps

φ = (φn−1 ◦R−1) ◦R ◦ (φn−2 ◦R−1) ◦R ◦ · · · ◦ (φ0 ◦R−1) ◦R (3.2)

Remark 3.2.1. Le Calvez in [44] uses Dehn twist instead of rotations. This is
not going to affect the properties we exploit here in any way. What is important
is the twist condition, that here still holds.

Write Φ2i := R and Φ2i+1 := φi ◦R−1 in order to simplify the notation:

φ = Φ2n−1 ◦ · · · ◦ Φ0 (3.3)

Now, we let hi : R2 → R be the generating function for Φi. Recall that by
definition then the following equations are verified:

∀(x, y), (x′, y′) ∈ R2, Φi(x, y) = (x′, y′) ⇔

{
y = −∂1h(x, x′)
y′ = ∂2h(x, x

′)
(3.4)

The critical points of hi, as expected, are in a bijection with the fixed points of
Φi. Following Le Calvez’s notation, we are going to write{

g(x, x′) = −∂xh(x, x′)
g′(x, x′) = ∂x′h(x, x′)

One can then take the sum of the hi to find a function whose critical points
(equivalently, fixed points of its gradient flow) are in bijection with the fixed
points of φ. We define a function

h : E := R2n → R, h(x) =
2n−1∑
i=0

hi(xi, xi+1) (3.5)
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where we set x2n := x0. We endow R2n with the standard Euclidean scalar
product, let us call it g; let ξ be the negative gradient vector field defined by
the pair (h, g)

ξ = −∇gh (3.6)

The tool we use to calculate the linking number between fixed points is a
function defined on an open subset of R2n. If

V =
{
x ∈ R2n|xi ̸= 0 ∀i ∈ Z

}
(3.7)

we define

L(x) =
1

4

2n−1∑
i=0

(−1)isgn(xi)sgn(xi+1) ∈ Z (3.8)

This function admits a continuous extension to the subset

W =
{
x ∈ R2n|∀i ∈ Z, xi = 0 ⇒ xi−1xi+1 > 0

}
(3.9)

A first result is the following Lemma:

Lemma 3.2.2. Let x0 and x1 be critical points of h (equivalently, ξ(xi) = 0).
Then,

L(x0 − x1) =
1

2
lk(γx1 , γx0) (3.10)

On the right hand-side, γxi ∈ Fix(φ) is the fixed point (or indifferently, 1-
periodic orbit) represented by the critical points xi of h.

Remark 3.2.3. The factor of one half is absent in [44]. We introduce it here
because we choose a different normalisation for the linking number. The reason
for this difference is simply explained: in Chapter 2 we work with braids which
are not necessarily pure, and within that setup the algebraic definition (mapping
the generators of the braid group to 1) seems more convenient. Furthermore, it
makes the linking number agree with the intersection numbers of cappings with
the fat diagonal in the symmetric product. This normalisation differs by a factor
of 2 from the one of Le Calvez: to see it for instance remark that the linking
number of the braid

t 7→
[
0,

1

2
exp(2πit)

]
∈ Sym2D

is 1 according to Le Calvez’s conventions, but with our normalisation it is 2
since it corresponds to the square of the generator of B2.

Remark 3.2.4. A consequence of this lemma and the fact that L takes values in
the set

{
−
⌊
n
2

⌋
, . . . ,

⌊
n
2

⌋ }
is that the length of the decomposition of ϕ necessarily

depends on the maximal (in absolute value) linking number of two different fixed
points.

The first main result is the following theorem:
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Theorem 3.2.5 (Le Calvez, [45]). Let xi ∈ E, i = 0, 1, and denote by xi(t) the
images of xi under the flow of ξ. Then the function

t 7→ L(x0(t)− x1(t)) (3.11)

is defined and continuous outside a finite set of points, and if it is not defined
for a t ∈ R then

lim
ε→0+

L(x0(t− ε)− x1(t− ε)) < lim
ε→0+

L(x0(t+ ε)− x1(t+ ε)) (3.12)

This theorem is the first step to define the filtration. The goal is, for any S
generating function for φ and g is a Riemannian metric on the associated vector
bundle, to define a function

I : CM(S, g;Z)⊗ CM(S, g;Z) → Z (3.13)

which is increasing along the differential. The Theorem tells us that, if we take
h as generating function (it is yet to be seen in which sense it is one) whenever
y ̸∈ ∂x, we have the inequality

I(x⊗ y) ≤ I(∂x⊗ y) (3.14)

What remains to define a filtration is removing the assumption that y ̸∈ ∂x,
or equivalently defining a notion of self-linking number for a fixed point of φ
which is consistent with the linking numbers of all other pairs of fixed points
in the Morse complex. To carry out this operation, we need to understand the
behaviour of L under the linearised dynamics of ξ. Before carrying this out, we
would like to explain how this function h is in fact a generating function in the
classical (à la Viterbo) sense, to fix the ideas. This fact is relevant as it will be
exploited in constructing the filtration for any (reasonable) generating function
in the following.

Le Calvez’s h is a generating function

We show that this h is a generating function for φ in the sense of definitions
1.3.10 and 1.3.11 as seen through the equations (1.12). This is the content of
Corollary 3.2.7, stated below.

A point (x, y) ∈ R2 is mapped to (X,Y ) if and only if there are (unique)
points (xi, yi) ∈ R2, i ∈ {0, . . . , 2n} such that (x0, y0) = (x, y), (x2n, y2n) =
(x′, y′), φi(xi1 , yi−1) = (xi, yi). This last condition is verified if and only if,
since hi generates fi,{

yi−1 = −∂xi−1
hi(xi−1, xi) = gi(xi−1, xi)

yi = ∂xi
hi(xi−1, xi) = g′i(xi−1, xi)

Let us assume that the decomposition ends in R−1 ◦R (we are not losing in
generality, we are essentially adding a trivial factor in the decomposition of φ
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into C 1-small factors); the order is important , since we want our maps in the de-
composition to twist positively and negatively alternatively. The decomposition
of φ more concretely will have to look like this:

R−1 ◦R ◦ φn−1 ◦R−1 ◦ · · ·φ0 ◦R−1 ◦R

where each φi is C 1-small.
Remember now that R is generated by (x, x′) 7→ −xx′ and R−1 by (x, x′) 7→

xx′. A Le Calvez generating function associated to this decomposition is there-
fore:

h : R2n+2 → R, (x0, . . . , x2n+1) 7→ −x0x1+
2n−1∑
i=1

hi(xi, xi+1)−x2nx2n+1+x2n+1x0

We isolated the first and the last two terms because they are the ones we are
going to differentiate in the following.

We now define the projection:

R2n+2 → R2, (x0, . . . , x2n+1) 7→ (x0, x2n+1)

Requiring the vertical differential to be 0 is then equivalent to asking for ξi = 0
for i = 1, . . . , 2n, i.e. (compare [44]) for

Φi−1(xi−1, yi−1) = (xi, yi), for i = 1, . . . , 2n

A simple computation then gives:{
x2n+1 − x1 = ∂x0h(x0, . . . , x2n+1)

−x2n + x0 = ∂x2n+1h(x0, . . . , x2n+1)
(3.15)

Let us show how this is enough to conclude. The vanishing of the vertical
differential ensures that x2n+1 = y2n: in fact

∂x2n
h = 0 ⇔ x2n+1 = g′2n−1(x2n−1, x2n)

but, on the other side, we know (ξ2n = 0) that

Φ2n−1(x2n−1, y2n−1) = (x2n, y2n)

that which is verified if and only if{
y2n−1 = g2n−1(x2n1 , x2n)

y2n = g′2n−1(x2n1 , x2n)

and the second equation allows us to conclude that

x2n+1 = y2n

as desired.
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Going back to the formalism of the introduction,write

(X,Y ) := φ(x, y)

then (x2n, y2n) = (X,Y ). The equations (3.15) above then become

φ(x0, y0) = (X,Y ) ⇔


∂V h = 0

X − x = ∂Y h(x0 = x, x1, . . . , x2n, x2n+1 = Y )

Y − y = −∂xh(x0 = x, x1, . . . , x2n, x2n+1 = Y )

and this is precisely the same equivalence as in (1.12). This shows that h is
indeed a generating function for φ in the classical sense, but we do not know
yet if we can do Morse theory with it: we need the Palais-Smale condition. A
first step is proving that h can be made quadratic at infinity by a linear map of
R2n that is also a gauge equivalence (Definition 1.3.17).

Quadraticity at infinity

If φ has compact support, it is easy to see that every term in the decomposition
can be assumed to coincide with the positive or the negative rotation outside
a compact set (see [45]). Write φ = Φ2n+1 ◦ · · · ◦ Φ0 as above. The generating
function associated to the decomposition, outside of a compact set of R2n+2,
coincides with

h∞(x0, . . . , x2n+1) =

2n+1∑
i=0

(−1)i+1xixi+1

which is a genuine quadratic form whose kernel has dimension 2: the Gram
matrix associated to h is a so-called Jacobi matrix

0 −1 0 · · · 0 1
−1 0 1 0

0 1 0
. . .

...
...

. . . . . . −1 0
0 −1 0 1
1 0 · · · 0 1 0


Such a bilinear form clearly has a two dimensional kernel, spanned by ((ej) is
here the canonical basis of R2n+2)

n∑
i=0

e2i,

n∑
i=0

e2i+1

Completing the squares as follows gives a linear diffeomorphism of R2n+2 that
preserves the fibres of the projection

R2n+2 → R2, (x0; . . . , x2n+1) 7→ (x0, x2n+1)

and that makes h non degenerate on such fibres.
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Lemma 3.2.6. Up to a linear gauge equivalence,

h∞(x0, . . . , x2n+1) =
1

4

2n∑
i=1

(−1)ix2i

Proof. Let us remark that

−x2ix2i+1+x2i+1x2i+2+x2n+1x2i = (x2i+2−x2i)(x2i+1−x2n+1)+x2i+2x2n+1

We apply this identity inductively to show

h∞(x0, . . . , x2n+1) =

n−1∑
i=0

(x2i+2 − x2i)(x2i+1 − x2n+1)

Every summand in the right hand side can be easily checked to be equal to

1

4

{
(x2i+2 − x2i + x2i+1 − x2n+1)

2 − (x2i+2 − x2i − x2i+1 + x2n+1)
2
}

so that

h∞(x0, . . . , x2n+1) =
1

4

n−1∑
i=0

{
(x2i+2 − x2i + x2i+1 − x2n+1)

2 − (x2i+2 − x2i − x2i+1 + x2n+1)
2
}

We define the endomorphism by

x2i+1 7→ x2i+2 − x2i + x2i+1 − x2n+1

x2i+2 7→ x2i+2 − x2i − x2i+1 + x2n+1

for i between 0 and n − 1. We map x0 and x2n+1 to themselves as promised.
The composition of h with this linear, fibre-preserving diffeomorphism has the
shape we were looking for.

Corollary 3.2.7. Up to a fibre preserving diffeomorphism generating functions
of Le Calvez type are quadratic at infinity, of signature n for a decomposition
of length 2n+ 2.

Palais-Smale condition Let ψ ∈ GL(R2n) be the linear map defined in the
previous section, and let g be the standard Euclidean product on R2n. Le
Calvez’s results (Theorem 3.2.5, the existence of the Dominated Splitting and
the Homothety Law (3.21) discussed in the next section) hold for the pair (h, g),
hence also for the pair (h ◦ ψ,ψ∗g), since there is a clear bijection between the
flow lines of the two pairs. We are now interested in showing that (h◦ψ,ψ∗g) is
Palais-Smale, to achieve the good definition of the Morse complex (up to small
perturbation of the metric) on the one hand, and to preserve the Lyapunov
property of the linking number on the other.

The Palais-Smale property for (h ◦ ψ, g) is clear because h ◦ ψ is quadratic
at infinity. This implies what we want, by the following obvious lemma:
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Lemma 3.2.8. Let f be a function on Rk, A ∈ GLk(R), and g an inner product
on Rk. If (f, g) satisfies the Palais-Smale condition, so does (f,A∗g).

Proof. The conclusion is very easy to see: given a sequence of points xj such
that |f(xj)| is bounded and ∥∇A∗gf(xj)∥A∗g → 0, we have to check that

∥∇gf(xj)∥g → 0 (3.16)

and then apply the fact that (f, g) is Palais-Smale to deduce the existence
of a convergent subsequence. The limit (3.16) is readily verified by standard
estimates obtained using the operator norm of A.

Remark 3.2.9. This proof clearly works in the more general setting of diffeo-
morphisms whose differential is bounded.

In Section 3.3.1 we are going to apply the construction from Section 1.3.2
to therefore define the Morse complex CM(h, g), for some Riemannian metric
g on R2n.

3.3 Definition of the filtration
Le Calvez’s work [44] provides us with another useful tool, a “dominated split-
ting” (the original wording being “décomposition subordonnée”) of TE. The
content of the following paragraph may be found in [44, Proposition 3.2.1].

Let ψ : R × E → E be the flow of ξ (the flow being complete is a result of
Le Calvez). Define, for j ∈

{
−
⌊
n
2

⌋
, . . . ,

⌊
n
2

⌋}
, the subset of TxE = E

Ej(x) =
{
v ∈ TxE | ∀t ∈ R, L(dxψt(v)) = j

}
∪ {0} (3.17)

The first result one needs to be aware of is that Ej(x) is in fact a vector
subspace of E. This is not immediately clear, since one from the definition
only has invariance under scalar multiplication. Le Calvez also computes its
dimension: if n is even and j = ±

⌊
n
2

⌋
then dimEj(x) = 1, in all other cases

dimEj(x) = 2. The Ej form a decomposition of the tangent bundle in the sense
that

TxE =
⊕

j∈{−⌊n
2 ⌋,...,⌊n

2 ⌋}
Ej(x) (3.18)

for all x ∈ E.
The decomposition is subordinated to the flow in the sense that it is com-

patible with it: for all x ∈ E and t ∈ R we have the equality

dxψ
tEj(x) = Ej(ψ

t(x)) (3.19)

We also define, for each j in the image of L, the spaces

E+
j (x) =

⊕
j≤k≤⌊n

2 ⌋
Ek(x), E

−
j (x) =

⊕
j≥k≥−⌊n

2 ⌋
Ek(x) (3.20)
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Equivalently, E+
j (x) (resp. E−

j (x)) is the set of vectors u in TxE such that

L(dxψ
t.u) ≥ j (resp. L(dxψt.u) ≤ j) ∀t ∈ R

The last property will prove crucial in the next section, as we are going to
use it to prove the existence of said filtration.

Proposition 3.3.1. Let uj ∈ Ej(x) and uk ∈ Ek(x) be two vectors of norm
1. We assume that j < k. Then, along the linearised flow of ξ, the norm of
uj shrinks much faster than the one of uk does. More formally, there exists a
λ ∈ (0, 1) and a positive constant C such that for all positive time t > 0 we
have:

∥dxψtuj∥
∥dxψtuk∥

≤ Cλt (3.21)

Here the symbol ∥·∥ indicates the norm of the standard Euclidean product on E,
which we denoted g above. We call (3.21) the “homothety law”.

This is proved in [44, Lemma 3.2.2].

Remark 3.3.2. When comparing with [44], the reader should be mindful of
the fact that here ξ is the negative gradient of h, in contrast with Le Calvez’s
convention. In his conventions, the function L is decreasing along pairs of flow
lines, and in Equation 3.21 one needs to swap numerator and denominator.

3.3.1 Existence of the filtration

The main idea we are going to exploit here is that the way the linearised flow
of ξ at a critical point changes the norms of unit vectors is governed by two
phenomena. The first, which is classical, is simply given by the eigenvalues of
the Hessian of h at the critical point. The second phenomenon is the homothety
law contained in Equation 3.21. The two phenomena will turn out to be clearly
not independent, and their interplay will yield the value that I should have
on the diagonal; equivalently, it will yield a well-defined notion of self-linking
number of a fixed point of φ. We assume here for simplicity that φ is non
degenerate (and h Morse as a consequence): the Morse-Bott case will be treated
in the Appendix A.

We start by fixing a critical point x of h, and we take two other points
x1, x2 ∈ E such that

lim
t→+∞

xi(t) = x, x = 1, 2. (3.22)

and which belong to different gradient lines, i.e.

∀t ∈ R, x1(t) ̸= x2

Remark 3.3.3. This allows for x1 or x2 to be a critical point, but not both.
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x1(t)− x2(t)

x1(t)

x2(t)

ξ
ξ

TxWs(x)

v(∞)

We take the difference vector and we normalise it:

R → S2n−1, t 7→ v(t) :=
x1(t)− x2(t)

∥x1(t)− x2(t)∥
(3.23)

We denote by v(∞) the limit-set at positive infinity:

v(∞) =
{
z ∈ S2n−1|∃(tk) ⊂ R, tk → +∞, v(tk) → z

}
⊆ TxE (3.24)

The first lemma shows that in fact any vector in v(∞) is tangent to the stable
manifold of ξ at x.

Lemma 3.3.4. v(∞) ⊂ TxW
s(x)

Proof. For this proof, we assume without loss of generality that v admits a limit
at +∞ (i.e. v(∞) is a point). The fact that this is the case is going to be proven
in the following lemma.

It suffices to check that the quantity
1

∥x1(t)− x2(t)∥2
Hh(x)(x1(t)− x2(t), x1(t)− x2(t)) (3.25)

where Hh(x) is the Hessian of h at x, is positive at the limit. Let us consider a
Morse chart centred at x, and assume that the metric in the chart is Euclidean:
we may assume this if we allow for changes in the Riemannian metric on E,
which we now do.

Given that xi(t) → x as t → ∞, we may assume without loss of generality
that xi(t) (for i = 1, 2) and x1(t) − x2(t) belong in the Morse chart. Working
in said chart, we are now going to prove the estimates

∥xi(t)− x∥ ∼ Ci(x, t)e−µxi t, i = 1, 2

where the µxi are the lowest eigenvalues of Hh(x) appearing in an expression
of xi(t) in the Morse chart around x. To simplify the notation, let us suppose
without loss of generality that x = 0. Denote by ϕ the Morse chart around x.

∥xi(t)∥E =
∥xi(t)∥E
∥ϕ−1xi(t)∥

∥ϕ−1xi(t)∥ ∼

∼ ∥xi(t)∥E
∥ϕ−1xi(t)∥

∥xi∥e−µxi t
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The terms Ci(x, t) := ∥xi(t)∥E

∥ϕ−1xi(t)∥ are positive and bounded in t, as follows from
a Taylor expansion to the first order of ϕ−1. They do not tend to 0 as t→ +∞
since ϕ−1 has invertible differential. Furthermore, as xi(t) → x, both eigenvalues
µxi are positive.

We can use this description to find a function C1,2(·) defined for large times,
such that ∥x1(t)−x2(t)∥ ∼ C1,2(t)e−µt. To do so, simply apply cosine formula,
keeping in mind that the cosine of the angle spanned by the vectors (x1(t) −
x, x2(t) − x) cannot be 1 since the flow of the gradient is conjugated by a
diffeomorphism to a radial vector field. If δ(t) is the cosine, we have

∥x1(t)− x2(t)∥2 = ∥x1(t)− x∥2 + ∥x2(t)− x∥2 − 2δ(t)∥x1(t)− x∥∥x2(t)− x∥ ∼
∼ C1(x, t)2e−2µx1 t + C2(x, t)2e−2µx2 t − 2δ(t)C1(x, t)C2(x, t)e−(µx1+µx2 )t =

= [C1(x, t)2 + C2(x, t)2e−2(µx2−µx1 )t − 2δ(t)C1(x, t)C2(x, t)e−(µx2−µx1 )t]e−2µx1 t

For large t

C1(x, t)2 + C2(x, t)2e−2(µx2−µx1 )t − 2δ(t)C1(x, t)C2(x, t)e−(µx2−µx1 )t > 0

and it does not tend1 to 0, as δ < 1 − ε for large enough t. Without loss of
generality, we assume µx2 − µx1 ≥ 0: the quantity above is then bounded as a
function of t. We denote it by C1,2(t).

Now, let (v1, . . . , v2n) be a basis of E in eigenvectors for Hh(x). Let λi be
the eigenvalue of vi. We can write in this basis the directions x1(t) − x and
x2(t)− x, defining functions αi, βi : R → R.

x1(t)− x

∥x1(t)− x∥
=
∑
i

αi(t)vi,
x2(t)− x

∥x2(t)− x∥
=
∑
i

βi(t)vi

Using the obvious identity x1(t) − x2(t) = x1(t) − x + x − x2(t), we can now
expand the quantity (3.25): it is thus asymptotic to

1

C1,2(t)2

∑
i

[
C1(x, t)αi(t)− C2(x, t)e−(µx2−µx1 )tβi(t)

]2
λi

Since C(x1, x2, ·), C(x1, x, ·), C(x2, x, ·) are positive and bounded, µx2−µx1 ≥
0, and whenever λj < 0 we have αj(t), βj(t) → 0, the limit for t→ +∞ of (3.25)
is positive or 0. Also, at least one of the terms in the sum does not vanish at
the limit. If µx1 ̸= µx2 , since αi(t), βi(t) are also bounded and C1(x, t) does
not tend to 0 at infinity, it suffices to notice that C1(x, t)αi(t) → 0 for all i
implies that αi(t) → 0 for all i. This is a contradiction with the fact that the
αi are coordinates of a unit vector, and there is at least a nonzero element in
the sum: (3.25) is positive in this case. If instead µx1 = µx2 , the proof is a bit

1This an application of the standard inequality a2 + b2 ≥ 2ab, where both a and b are
positive.
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more involved. We start from noticing that, the limit above being 0, it would
imply

lim
t→+∞

C1(x, t)
x1(t)− x

∥x1(t)− x∥
− C2(x, t)

x2(t)− x

∥x2(t)− x∥
= 0

which in turn yields (µ := µx1 = µx2 > 0)

lim
t→+∞

eµt(x1(t)− x2(t)) = 0

so that x1(t) − x2(t) = o(e−µt), contradiction with the fact that C1,2(t) does
not tend to 0. Here as well the value (3.25) is then strictly positive in the limit,
and we have proved the lemma.

A consequence of the proof is that in fact v converges.

Lemma 3.3.5. v(∞) is a point.

Proof. With the notations above,

x1(t)− x2(t)

∥x1(t)− x2(t)∥
∼ 1

C1,2(t)

(∑
i

αi(t)C
1(x, t)vi −

∑
i

βi(t)e
−(µx2−µx1 )tC2(x, t)(t)vi

)

The αi and the βi clearly admit limits as the quantities x1(t)−x
∥x1(t)−x∥ ,

x2(t)−x
∥x2(t)−x∥

tend to a unit vector, since they do so in a Morse chart. For the same reason,
C1(x, t), C2(x, t) converge to some positive value. For C1,2(t), just remark that
the same is true for δ(t).

We shall now see how the homothety law (3.21) lets us compute L in terms
of the eigenvalues of the hessian matrix. We need the following obvious corollary
of (3.21):

Corollary 3.3.6. Let vi, vj be two nonzero eigenvectors of Hh(x), of eigen-
values respectively µi and µj. Then if L(vj) < L(vi) (provided they are both
defined) we have µi < µj.

Proof. Without loss of generality we assume we are in a Morse chart so that, in
the coordinates given by Morse lemma,

ψt(x1, · · · , x2n) = (e−µ1tx1, · · · , e−µ2ntx2n)

Since the flow in the chart is linear, (3.21) gives

∥vtj∥
∥vti∥

= e−(µj−µi)t
∥vj∥
∥vi∥

< Cλt → 0

so that necessarily µj − µi > 0.

Remark 3.3.7. We have already allowed for changes in the Riemannian metric
on E around the critical points: we need to highlight this as it will be used several
times in what follows.
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We want now to prove the following Lemma, which is going to later imply
our main result:

Lemma 3.3.8. Let x, y, z be three critical points of h, such that there is a
negative gradient line connecting x to z, and one connecting y to z. Then if n
is odd

L(x− y) ≤
⌊n
2

⌋
−
⌊
Indhz

2

⌋
and if n is even

L(x− y) ≤
⌊n
2

⌋
−
⌈
Indhz

2

⌉
where Indhz is the Morse index of h at z.

Proof. We can estimate the maximum possible L for an eigenvector in TxW s(x)
(remember that we are looking at the negative gradient flow), using the dimen-
sion of Ej(x). Let us remark first that function L is defined on every eigenspace:
in fact the Ej(z) are stabilised by the linearised flow and are therefore mapped
into themselves by the Hessian. Now, the restriction to a subspace of a diago-
nalisable matrix is still diagonalisable: this fact together with (3.18) shows that
there is a basis for TzE in eigenvectors of the Hessian Hh(z), v1, . . . , v2n, such
that L(vi−1) ≥ Li for all i. Using the homothety law (3.21) we also know that
they are ordered by eigenvalue: if i < j then µi ≤ µj . In particular, if vi has
eigenvalue λi we have the relations

λ0 ≤ λ1 < · · · < λ2i ≤ λ2i+1 < · · · ≤ λ2n−1

in the case where n is odd, and

λ0 < λ1 ≤ λ2 ≤ · · · < λ2i−1 ≤ λ2i < · · · < λ2n−1

if n is even. We can fill the bases of the different Ej , starting from the highest
eigenvalues and from the lowest possible L, −

⌊
n
2

⌋
. We find via elementary

calculations that if a vector v is in TzW s(z), then it is in E−
j (z) for j =

⌊
n
2

⌋
−⌊

Indhx
2

⌋
whenever n is odd (so that every Ei has dimension 2), or for j =⌊

n
2

⌋
−
⌈
Indhx

2

⌉
if n is even.

Assume now n is odd (the proof for even n being identical). By Theorem
3.2.5, we have the following inequalities, for t→ +∞:⌊n

2

⌋
−
⌊
Indhx

2

⌋
≥ L

(
x1(t)− x2(t)

∥x1(t)− x2(t)∥

)
≥

≥ L

(
ψ−t(x1)− ψ−t(x2)

∥ψ−t(x1)− ψ−t(x2)∥

)
≥ L(x− y)

where similarly to the proof of Lemma 3.3.8

lim
t→−∞

x1(t) = x, lim
t→−∞

x2(t) = y, lim
t→+∞

x1(t) = lim
t→+∞

x1(t) = z
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Remark 3.3.9. In the proof above we have also allowed for changes in the
metric around the critical points. These changes do not affect the validity of Le
Calvez’s Theorem 3.2.5, and the inequalities above still hold.

From Section 1.3.2 we know that CM(h, g;Z) is well defined for at least one
choice of Riemannian metric g on R2n.

We now define the function

I : CM•(h, g;Z)⊗ CM•(h, g;Z) → Z

by

I(x⊗ y) =


L(x− y) x ̸= y⌊
n
2

⌋
−
⌊
Indhx

2

⌋
x = y, n odd⌊

n
2

⌋
−
⌈
Indhx

2

⌉
x = y, n even

(3.26)

on the generators and extend the usual way by

I

∑
i,j

λi,jxi ⊗ xj

 := min
i,j|λi,j ̸=0

I(xi ⊗ xj) (3.27)

Proposition 3.3.10. The function I as defined in (3.26) induces a filtration
on CM•(h, g;Z)⊗ CM•(h, g;Z) for a choice of Riemannian metric g.

Proof. The differential in the tensor product is defined to be ∂ ⊗ Id + εId⊗ ∂,
where ∂ is the Morse differential on CM•(h, g;Z) and ε is a sign (standard
definition of the product differential). We may apply the proofs above to the
special cases in which either x or y (critical points which negative gradient lines
of h flow away from) is equal to z: this shows that v(∞) also in this case belongs
in TzW

s(z). Switching to −h one can find opposite inequalities in the case in
which x = y, and a flow line connects y to z. The result is I(z, z) ≥ I(x, y) in
the former case, and I(x, y) ≤ I(x, z) in the latter. This proves that I gives a
filtration on CM•(h, g;Z)⊗ CM•(h, g;Z).

The expression (3.26) is rather awkward, for essentially two reasons. First,
even though the actual number on the diagonal may not depend on the gener-
ating function, the description does. Second, it is not apparent what kind of
topological information I(x ⊗ x) bears. Both points are in stark contrast with
the situation outside of the diagonal of the tensor product: for x ̸= y, L(x− y)
is a half of the linking number of the orbits associated to x and y, a piece of
totally intrinsic information. We aim now to decode the meaning of I(x ⊗ x).
A deeper analysis will be provided when comparing with the Floer picture, in
a later section.

Fix φ ∈ Hamc(R2) non degenerate, and h as above. By Viterbo’s work
[72] we know that differences of Morse indices of critical points of h coincide
with differences of the Conley-Zehnder indices of the associated orbits of φ.
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If x ∈ Crit(h), we denote by γx the associated periodic orbit of φ. We may
therefore normalise the Conley-Zehnder index the following way:

Indh(x)− σ(h) = CZ(γx) + 1 (3.28)

Recalling that σ(h) = n−1, we plug this equality and (3.28) in (3.26). What
we obtain is the following, more natural definition of I:

I(x⊗ y) =

{
1
2 lk(γx, γy) x ̸= y

−
⌈
CZ(γx)

2

⌉
x = y

(3.29)

We are going to justify the normalisation (3.28) later on, and prove that it
coincides with one of the usual ones.

3.4 Extension to Viterbo-type generating func-
tions

Fix φ ∈ Hamc(R2): Laudenbach-Sikorav’s Theorem [68] provides a generating
function S : R2 × RN → R which is quadratic at infinity. Such a function
is obtained by cutting any Hamiltonian isotopy between the identity and φ
into C 1-small components, say n of them. The proof of Sikorav’s theorem as
developed by Brunella [14] shows that in such a case there exists a generating
function defined on R4n+2. We are now going to prove the central theorem, let
us restate it:

Theorem 3.4.1. Let S : R2×Rk → R be a GFQI representing a non degenerate
compactly supported Hamiltonian diffeomorphism φ ∈ Hamc(R2). Then there
exists a non degenerate quadratic form on Rl and a metric g on R2+k+l such
that (S ⊕Q, g) is a Morse-Smale, Palais-Smale pair, and the function

I : CM(S ⊕Q, g;Z)⊗ CM(S ⊕Q, g;Z) → Z

I(x⊗ y) =

{
1
2 lk(γx, γy) x ̸= y

−
⌈
CZ(γx)

2

⌉
x = y

increases along the tensor product differential.

Proof. Fix S as in the statement, and let h be a Le Calvez generating func-
tion. Then, by Viterbo Uniqueness Theorem, there exist two non degenerate
quadratic forms

Qi : Rki → R, i = 1, 2, ki ∈ N

and a gauge equivalence
ψ : R2n+k1 → R2n+k1

such that
(h⊕Q1) ◦ ψ = S ⊕Q2
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We are clearly going to set Q := Q2 and l := k2. Now, let g be the Riemannian
metric on R2n for which we know that I defines a filtration on CM(h, g;Z) ⊗
CM(h, g;Z). If g′ is the associated Riemannian metric defined on Rk+k1 we
have the following isomorphisms of complexes

CM(h,g;Z) ∼= CM(h⊕Q1, g
′;Z) ∼=

∼= CM((h⊕Q1) ◦ ψ,ψ∗g′;Z) = CM(S ⊕Q,ψ∗g′;Z)

The filtration I is then pushed forward along these isomorphism of chain com-
plexes, proving the statement of the Theorem.

3.4.1 Linking filtration and continuation maps

We now analyse the behaviour of the linking filtration under continuation maps,
i.e. chain homotopies between Morse complexes induced by regular homotopies
between Morse data. Given the result of the previous section about the construc-
tion of the filtration for general generating functions, it suffices to understand
the behaviour of the filtration under continuation maps between the functions
constructed by Le Calvez. Let (hi, gi) for i = 0, 1 be two such Morse-Smale and
Palais-Smale pairs defined on the same vector bundle E over R2 (in particular,
the two quadratic forms at infinity coincide). From Lemma 3.2.8 we know that
both

CM(hi, gi;Z)⊗ CM(hi, gi;Z)

carry a filtration I as defined above. We want to compare the filtration on the
two sides of a continuation map between the two chain complexes. We consider
continuation maps of the kind we described in Chapter 1. We consider a convex
homotopy (H,G) between (h0, g0) and (h1, g1), and let s ∈ (−δ, 1 + δ) be the
time of the homotopy. The homotopy H contains a term which only depends on
s in its construction: we ignore it, since it does not affect the properties of L as
long as the Riemannian metric G is a small perturbation of a product metric.

Because the twist condition read off the generating function is a convex
condition on the derivatives, a homotopy as above has the property that any
(H(s, ·), G(s; ·, ·)) is a Le Calvez pair, so that L has the Lyapunov property for
every fixed s, and likewise for any fixed s there exists a dominated splitting as
above.

Lemma 3.4.2. Define L̃ : (−δ, 1 + δ)× E → Z as

(s, x0, . . . , x2n−1) 7→ L(x0, . . . , x2n−1)

If for some x̃ ∈ (−δ, 1 + δ)×E the quantity L̃(x̃) is not defined, then there is a
positive ε such that for all 0 < t < ∥ε∥, if x̃t = ϕt−∇GH

x̃, L̃(x̃t) is defined and

L̃(x̃−t) < L̃(x̃t)

for all 0 < t < ε.



3.4. EXTENSION TO VITERBO-TYPE GENERATING FUNCTIONS 81

Proof. This Lemma is in fact a corollary of the proof of Theorem 3.2.5. Assume
L̃(x̃) is not defined: this means that if x̃ = (s, x), L(x) is not defined either.
Then by Theorem 3.2.5 there is an ε > 0 such that x−t ∈ Wj− , xt ∈ Wj+ for
all 0 < t < ε, j− < j+. Here xt is the flow of the vertical vector field −∇gsh

s

evaluated at x at time t. Now, the Wj± are open in E: for small times then
the vertical part of the flow will still be in Wj− in the negative direction, and
in Wj+ in the positive one.

More precisely, let χt : R × E → R be the first projection of the flow of
−∇GH, and ηt : R × E → E be the second one. Then by continuity of χ
for any small δ1, for times 0 ≤ |t| < δ, |χt(s, x) − s| < δ1; remark now that
the transversality condition between the vector field and the boundary between
Wj− and Wj+ is open, so for small perturbations of the vector field ∇gsh

s it
is still verified. By continuity for any ε > 0 there is some δ > 0 such that for
s′ ∈ (s− δ, s+ δ)

∥pr2∇GH(s′, x)−∇gsh
s(x)∥ < ε

so by the lines above for an arbitrary small ε the transversality condition is
satisfied for times which are small enough (possibly smaller of course than the
time in Theorem 3.2.5), and we conclude.

We now want to extend the result of the previous Lemma to say that I
increases along continuation maps. Let (H,G) be a cobordism as above. The
proof of Lemma 3.3.4 is still valid in this context, since it is simply a dynamical
result which does not depend on the form of the Morse function: if x, y ∈
Crit(h0), z ∈ Crit(h1) and there are gradient lines connecting x and y to z,
with the notations above

v(∞) ∈ TzW
s(z) = R⊕ E

and the function L̃ really computes the L of the vertical projection of v(∞).
Applying exactly the same proof as above (it is necessary to use the dominated
splitting of E at z for the Morse flow induced by h1), we find the inequality:

I(x⊗ y) ≤ I(z ⊗ z)

We have thus proved the Proposition:

Proposition 3.4.3. Let (hi, gi) be pairs for which the filtration I is defined on

CM(hi, gi;Z)⊗ CM(hi, gi;Z)

Assume Φ is a continuation map

Φ : CM(h0, g0;Z) → CM(h1, g1;Z)

given by a linear cobordism (H,G). Then

I(x⊗ y) ≤ I(Φ(x)⊗ Φ(y))
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As a corollary, we obtain that the same property holds true for continuation
maps between more general generating functions, not necessarily of Le Calvez-
type.

Corollary 3.4.4. Let (S⊕Q, g), (S′⊕Q′, g′) be two pairs as in Theorem 3.4.1,
defined on the same vector bundle. Then, if Φ is a continuation map induced
by a linear cobordism of Morse data, ∀x, y ∈ CritS,

I((x, 0)⊗ (y, 0)) ≤ I(Φ(x, 0)⊗ Φ(y, 0))

Proof. Use that fact that both S, S′ coincide with a function of Le Calvez-type
up to stabilisation, then apply the previous proposition.

We now report a Lemma about the relation between the C 0-metric on gen-
erating functions and the Hofer metric. This Lemma is a variation of Theorem
1.2.B in [12], and the author could not find a proof in the literature. A proof
may also be given via the theory of Hamilton-Jacobi equations.

Lemma 3.4.5. Let ε > 0. Given φ ∈ Hamc(R2) there exists a δ > 0 such that
for every ψ ∈ Hamc(R2) with dH(φ,ψ) < δ there are GFQI S and T for φ and
ψ respectively such that

∥S − T∥∞ ≤ ε (3.30)

Proof. By bi-invariance of the Hofer metric, it suffices to check that if H is a
compactly supported Hamiltonian generating φ, and ∥H∥(1,∞) ≤ δ for a positive
real number δ, then there exists a GFQI S for φ, a non degenerate quadratic
function on the fibres Q (which therefore generates the identity) with

∥S −Q∥∞ ≤ ε

For any compactly supported Hamiltonian G on R2, consider an autonomous
Hamiltonian L on R2, constantly equal to δ on the support of G, with very
small first and second derivatives, positive and compactly supported. Then ϕ1L
has a generating function F without fibre variables. The function F is moreover
positive and maximum equal to δ: this is true because (in the notation from
[73]) c−(ϕ1L) = 0 by positivity of the Hamiltonian, c−(ϕ1L) = minF by the fact
that F has no fibre variable and spectrality axiom, c+(ϕ1L) = maxF for the
same reason and every fixed point of ϕ1L has action either 0 or δ.

Take now a decomposition of ϕ1H into N Hamiltonian diffeomorphisms ϕ1Hi

for i = 0, . . . , N − 1, so that for every t ∈ [0, 1]

ϕtHi
= ϕ

1+t
N

H

We may thus assume ϕ1Hi
to be generated by the Hamiltonian

Hi(t, x) :=
1

N
H

(
i+ t

N
, ϕ

1+t
N

H (x)

)
For N large enough then:
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• Each Hi is C 2-small;

• ∥Hi∥(1,∞) ≤ δ = ∥H∥∞;

• ∥Hi∥∞ ≤ δ

Then we apply the above remark to each Hi: we obtain generating functions Fi
for Li which are positive and with maximum less than or equal to C. Now, since
Hi is C 2-small, it admits a generating function Si. Since Hi ≤ Li we moreover
have

Si ≤ Fi ≤ δ

In fact Fi − Si generates Li −Hi (because Li is constant on Supp(Hi)) which
is a positive Hamiltonian, and we end as above for the inequality Si ≤ Fi.
The inequality Fi ≤ δ was already proved above. We then apply composition
formulas for generating functions to the Si (see Lemma 1.3.23): we obtain
a generating function quadratic at infinity S, with associated non degenerate
quadratic form Q such that

∥S −Q∥∞ ≤ Nδ

We get what we wanted setting δ = ε
N .

We have then the following dynamical application:

Proposition 3.4.6. Let φ ∈ Hamc(R2) be a non degenerate Hamiltonian dif-
feomorphism. Assume that the action values of distinct fixed points of φ are dis-
tinct. There then exists a δ > 0 such that if ψ is non degenerate and dH(φ,ψ) <
δ and x ̸= y ∈ Fix(φ) are non degenerate critical points, lk(x, y) = k, there exist
x′, y′ ∈ Fix(ψ) with lk(x′, y′) = k.

Proof. Take generating functions h and k for φ and ψ respectively from Lemma
3.4.5, perturb them to have only finitely many critical points, and fix metrics
g, g′ allowing for the definition of the respective Morse complexes. We may
assume that

∥h− k∥∞ < ε

for
ε <

1

2
min{h(x)− h(y)|x, y ∈ Crit(h)}

Define the continuation map

Φ : CM(h, g;Z) → CM(k, g′;Z)

and its opposite Ψ:

Ψ : CM(k, g′;Z) → CM(h, g;Z)

We have to show that, given any critical point x of h corresponding to a non
degenerate fixed point of φ, there exist two gradient lines, γΦ,x and γΨ,x, the
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former defining Φ, negatively asymptotic to x and positively asymptotic to some
x′ (which is then a critical point of k), and the latter defining Ψ, negatively
asymptotic to x′ and positively asymptotic to x. By standard results in Morse
theory, Ψ ◦ Φ is homotopic to IdCM(h,g;Z). Furthermore, let λ = h(x). Fix a
µ′ > 0 such that

µ+ 2ε < min{h(x)− h(y)|x, y ∈ Crit(h)}

which is possible from the hypothesis in the statement. Then by definition

CMλ+µ(h, g;Z) = CMλ+µ+2ε(h, g;Z)

This implies that, by the above, that

Ψ ◦ Φ|CMλ+µ(h,g;Z) ∼ IdCMλ+µ(h,g;Z)

because, under the composition Ψ ◦ Φ, the filtration may jump upwards by 2ε
at most. This is still true at the quotient

Ψ ◦ Φ|CM(λ−µ,λ+µ)(h,g;Z) ∼ IdCM(λ−µ,λ+µ)(h,g;Z) (3.31)

but in this case the complex CM (λ−µ,λ+µ)(h, g;Z) is generated by exactly one
critical point: the composition (3.31) is exactly the identity. This proves that
the gradient lines γΦ,x and γΨ,x exist. Repeat the argument for y, to find γΦ,y
and γΨ,y. Since these lines exist, we have

I(x⊗ y) = I(γΦ,x(−∞)⊗ γΦ,y(−∞)) ≤ I(γΦ,x(+∞)⊗ γΦ,y(+∞)) =

= I(γΨ,x(−∞)⊗ γΨ,y(−∞)) ≤ I(γΨ,x(+∞)⊗ γΨ,y(+∞)) = I(x⊗ y)

We define then (x′, y′) := (γΦ,x(+∞), γΦ,y(+∞)). We are now left to show
that x′ ̸= y′. By the C 0-Lipschitz property of continuation maps, |h(x) −
k(x′)|, |h(y)− k(y′)| < ε, where ε is the one appearing in the proof of Theorem.
Since now by definition of ε we have |h(x)− h(y)| ≥ 2ε by triangle inequality

|k(x′)− k(y′)| ≥ |h(x)− h(y)| − |k(x′)− h(x)| − |k(y′)− h(y)| > 2ε− 2ε = 0

Since k(x′) ̸= k(y′), obviously x′ ̸= y′. We may now at last conclude that

lk(xy) = I(x⊗ y) = I(x′ ⊗ y′) = lk(x′, y′)

3.5 Floer’s picture
Since the Morse theory of generating functions is known to be isomorphic to
Floer Homology for (compactly supported) Hamiltonian diffeomorphisms (see
for instance [50]) as filtered modules, it may come as no surprise that one may
define a filtration I on Floer complexes, again computing the linking number
outside the diagonal. The two filtrations, as we are going to see below, coincide
under the isomorphism Morse-Floer. We are going to define the Floer filtra-
tion in this section, building on work mostly by Hofer-Wysocki-Zehnder [32],
Hutchings [34], and Siefring [66].
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Normalisation of the Conley-Zehnder index The Conley-Zehnder index
is going to play a fundamental role in the very definition of I. In order to com-
pare our results with existing ones, we need to make sure that the normalisation
we use for the index coincides with the reference literature. Remember that we
had set

Indh(x)− σ(h) = CZ(γx) + 1

in (3.28). The previously cited works normalise the index the following way:
if H : R2 → R is a C 2-small Hamiltonian, and α is a 1-periodic orbit of the
Hamiltonian diffeomorphism of R2 defined by H and associated to a critical
point α of H (under the C 2-smallness hypotheses, fixed points of the time 1-
map are exactly the critical points of H), we set

CZ(α) + 1 = IndH(α) (3.32)

We have to check that the two normalisations (3.28) and (3.32) coincide on
a simple example.

Consider H defined as

H(x, y) =
ε

2
ρ(x, y)(x2 + y2)

where ρ is a plateau function we use to make H compactly supported. For small
ε the Hamiltonian H is indeed C 2-small, and the origin is a non degenerate fixed
point of the time 1 map φ. The Morse index of 0 for H is clearly 0, so that by
(3.32)

CZ(0) = −1

We now have to find a generating function for H of the Le Calvez kind and
compute its Morse index at the point representing the origin of the plane as a
fixed point. The problem is local in nature, so ignore the contribution of ρ, and
we assume H generates a genuine rotation of angle ε. A generating function
for the symplectomorphism R−1 ◦ φ (remember, R is the clockwise rotation of
order 4) is

h0(x0, x1) =
x20
2

sin ε

cos ε
+

1

cos ε
x0x1 +

x21
2

sin ε

cos ε

so that using Le Calvez’s results we obtain the following generating function:

h(x0, x1, x2, x3) =
x20
2

sin ε

cos ε
+

1

cos ε
x0x1 +

x21
2

sin ε

cos ε
− x1x2 + x− 2x3 − x3x0

The critical point corresponding to the origin of the plane is the origin of R4:
we have to compute the Morse index of h there. The Hessian of h at 0 ∈ R4 is

M =


sin ε
cos ε

1
cos ε 0 −1

1
cos ε

sin ε
cos ε −1 0

0 −1 0 1
−1 0 1 0


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and we approximate it by means of the obvious Taylor expansion:

M ′ =


ε

1−ε2/2
1

1−ε2/2 0 −1
1

1−ε2/2
ε

1−ε2/2 −1 0

0 −1 0 1
−1 0 1 0

 (3.33)

The signatures of M and M ′ coincide. We compute then the determinants of
the square submatrices of M ′ whose diagonal is contained in the one of M ′: for
small ε > 0, the top-left entry

ε

1− ε2/2

is positive, and the determinants of the other submatrices are negative. There
is exactly one sign change for these determinants, which implies

σ(M ′) = σ(M ′) = 1

By definition then
Indh(0) = 1

From (3.28) and knowing that σ(h) = 1 we find

CZ(γ0) = −1

which is what we wanted to show.

3.5.1 A filtration on the Floer complex

Consider again φ ∈ Hamc(Σ) generated by a Hamiltonian H. If φ is non
degenerate, for a generic choice of almost complex structure J the Floer complex
(CF (H,J ;Z), ∂) is well defined. Let x, y ∈ Fix(φ). We may define the function

I(x⊗ y) =

{
1
2 lk(x, y) x ̸= y

−
⌈
CZ(x)

2

⌉
x = y

(3.34)

on the product of generators in complete analogy to what was done above, and
we extend to the whole complex CF (H,J ;Z)⊗ CF (H,J ;Z) as done in (3.27).
In this case it induces a filtration as well: we have to prove that

Proposition 3.5.1.
I(∂(x⊗ y)) ≥ I(x⊗ y)

In this last expression, ∂ denotes the tensor product differential

∂(x⊗ y) := ∂x⊗ y + (−1)CZ(x)x⊗ ∂y

Before starting with the proof of the proposition, we mention the following
equality:



3.5. FLOER’S PICTURE 87

Lemma 3.5.2. In the notation of the previous chapter, if x is a 1-periodic orbit
of φ,

I(x⊗ x) = ατ−(x) (3.35)

for a trivialisation τ , canonical up to homotopy.

Proof. First off, τ is constructed taking a capping disc u in Σ for the orbit
x. Since the pullback bundle u∗TΣ has contractible basis, it is globally trivial
and any two trivialisations are homotopic. Adding to this fact our assumption
that π2(Σ) = 0, we obtain that τ is indeed canonical up to homotopy. After
remarking this the Lemma is a trivial consequence of Equation (1.21), because
p takes values in {0, 1}.

We are going to use the canonical trivialisation τ of the above Lemma
throughout this section.

Proof. Of Proposition3.5.1 In the Hamiltonian Floer setting, we are lead to
count intersections between pseudoholomorphic curves defining the differential,
in order to estimate the variation of I. Let u, v : Rs×S1t → Σ be two Floer cylin-
ders with distinct images. The two cylinders have therefore only finitely many
intersections: since the images are distinct, the asymptotic description given by
Siefring in [67] implies that the cylinders do not intersect in a neighbourhood
of infinity, but they cannot have infinitely many intersections in a compact set,
else they would have the same image. Let u(±∞, ·) = x±, v(±∞, ·) = y±. Here
we make the abuse of notation of giving the same name to a fixed point and the
periodic orbit through that fixed point. Denote by ū and v̄ the graphs of u and
v respectively. Remark that we are allowing for the case in which the cylinders
are trivially constant at a Hamiltonian orbit.

Looking at the (unordered) pair (u, v) as a homotopy between the braids
composed by the asymptotic Hamiltonian orbits, we easily see from (1.2) that
to each (transverse) intersection counted in ū · v̄ corresponds a linking increase
of 2 since such intersections are positive. If x± ̸= y± then we have the following
formula:

ū ∗ v̄ = ū · v̄ + ι∞(ū, v̄) = ū · v̄ = I(x+ ⊗ y+)− I(x− ⊗ y−)

In the second equality we use x± ̸= y± to deduce that ι∞(ū, v̄) = 0, and in the
third equality we use this assumption again to infer that

I(x± ⊗ y±) =
1

2
lk(x±, y±)

Assume now that x− = y− (the case at +∞ being analogous). Then the
same calculations as above lead to

ū ∗ v̄ = ū · v̄ + ιτ−∞(ū, v̄)− ατ+(x−) = I(x+, y+)− I(x−, y−)

since ū · v̄+ιτ−∞(ū, v̄) = 1
2 lk(x+, y+) by (1.2). These are all the possible cases we

have to consider: in the tensor product differential we have to count constant
cylinders at periodic orbits and Floer cylinders connecting periodic orbits of
Conley-Zehnder index difference 1.
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Floer theory comes with a package of higher operations, see for instance [64].
We now give some results in the case of pair-of-pants products. We first have
to describe the geometric meaning of the intersections of the relevant curves.

A pair of pants with p legs (and one waist) is a branched p-fold cover of the
cylinder Rs×S1t , trivial on the region s < 0 and non trivial on s > 0. The point
(s, t) = (0, 0) is the only branching point. The preimage under the covering
map of sets { s = s0 } are circles of length p for s0 < 0, and the disjoint union
of p circles of length 1 for s0 > 0. Considering two pairs of pants u, v : Sp → Σ
(not necessarily holomorphic), and denote by us, vs the restrictions

us, vs : π
−1({s} × S1) → Σ

with π : Sp → R × S1 being the branched covering map. Since intersections
of pseudoholomorphic curves are isolated, we may assume that the graphs of
us and vs do not intersect for small |s| > 0, but we allow for intersections in
π−1({0} × S1). Then, if without loss of generality s > 0, the pair (u−s, v−s)
forms p braids with two strands of length 1, and (us, vs) forms one braid with
two strands, and of length p. The relation between these two sets of braids is
easily described by the following Lemma:

Lemma 3.5.3. In the same context as above, for ε > 0 sufficiently small we
have

1

2
lk(uε, vε) =

1

2

p∑
i=1

lk(ui−ε, v
i
−ε) + θ(u, v) (3.36)

where θ(u, v) is the count of intersections between the graphs of u and v in
π−1({0} × S1).

Proof. Denote as above uε and vε are the restrictions of u and v respectively
to the unique connected component of π−1({ε} × S1). By continuity of u and
v, since (0, 0) is the branching point of the cover Sp → R × S1, there exists
a numbering uj−ε (resp. vj−ε) for the maps S1 → Σ defined by restriction of
u (resp. v) to the connected components of π−1({−ε} × S1) so that for all
j ∈ {0, . . . , p− 1} and t ∈ [0, 1] we have

lim
ε→0

uj−ε(t) = lim
ε→0

uε(t+ j), lim
ε→0

vj−ε(t) = lim
ε→0

vε(t+ j)

Consider the two equalities for t = 0: when passing through the branching point
(letting ε → 0) we are concatenating the p braids of two strands and length 1
to obtain one braid with two strands and length p. Up to a small perturbation
of either pair of pants, we may assume that each intersection counting towards
θ(u, v) is away from the branching point and transverse. Each transverse inter-
section appearing in π−1((−ε, 0))× S1) makes the linking number of the corre-
sponding braid change by 2. Each transverse intersection in π−1((0, ε)) × S1)
makes the linking number of (us, vs) change by 2, for s ∈ (0, ε). For each trans-
verse intersection in π−1({0} × S1) the two points of view are equivalent. Since
lk is additive under concatenation, this proves the Lemma.
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Remark 3.5.4. Remark that the order of concatenation of the p braids is not
canonical, but the two sides of (3.36) do not depend on it.

We may now define an analogue of I on the tensor power of CF (H,J ;Z):

Ip : CF (H,J ;Z)⊗p ⊗ CF (H,J ;Z)⊗p → Z, (3.37)

Ip((x
1
1 ⊗ · · · ⊗ x1p)⊗ (x21 ⊗ · · · ⊗ x2p)) :=

p∑
i=1

I(x1i ⊗ x2i ) (3.38)

By definition of the tensor product differential, Ip is still a filtration (we are
counting, as above, intersections between trivial Floer cylinders and Floer cylin-
ders appearing in the definition of the differential). Let H#p be the concatena-
tion of the Hamiltonian H, so that H#p generates ϕpH . The Floer complex of
H#p also bears a linking filtration I, defined as before in this chapter. Let

Pp : CF (H,J ;Z)⊗p → CF (H#p, Jp;Z) (3.39)

be the p-pair of pants product on the Floer complex. We want to show:

Theorem 3.5.5. The pair of pants product (3.39) preserves the filtrations I
and Ip, i.e.

Ip((x
1
1 ⊗ · · · ⊗ x1p)⊗ (x21 ⊗ · · · ⊗ x2p)) ≤ I(Pp(x11 ⊗ · · · ⊗ x1p)⊗Pp(x21 ⊗ · · · ⊗ x2p))

Notation 3.5.6. If u : Sp → Σ is a pair of pants in Σ, we denote by ū its graph

ū : Sp → Sp × Σ

Assume ui is a pair of pant ui : Sp → Σ, negatively asymptotic to xi1, . . . , xip
and positively asymptotic to yi, for i = 1, 2. If u1 = u2, then y1 = y2 = y and
for all j, x1j = x2j = xj , so that we can estimate the difference

I(y ⊗ y)− Ip((x1 ⊗ · · · ⊗ xp)⊗ (x1 ⊗ · · · ⊗ xp))

using the Conley-Zehnder indices only, assuming that the transversality is achieved.
If the two pairs of pants are distinct instead, we are going to need to compute
the Siefring product u1 ∗ u2 between the two graphs

u1, u2 : Sp → Sp × Σ

and remark that in this case u1 ∗ u2 ≥ 0 to conclude.
For the next Lemma we are not yet requiring the moduli spaces to be cut-out

transversely, we just ask for the existence of these curves. Recall that for the
pairs of pants product we use the setup provided by [62] and [25].

Lemma 3.5.7. Let H be a Hamiltonian on Σ, φ be its time 1-map. Let
x11, . . . , x

1
p, x

2
1, . . . , x

2
p be fixed points of φ, and y1, y2 be fixed points of φp. As-

sume that ui is a pair of pants appearing in the computation of P(xi1⊗· · ·⊗xip)
with positive asymptotic orbit yi ∈ Fix(φp) and that Im(u1) ̸= Im(u2). Then

u1 ∗ u2 ≤ I(y1 ⊗ y2)− I((x11 ⊗ · · ·x1p)⊗ (x21 ⊗ · · · ⊗ x2p)) (3.40)
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Proof. Remark that because intersections between pseudoholomorphic curves
are isolated and an asymptotic description of the behaviour of pseudoholomor-
phic half-cylinders (see [67]) if Im(u1) ̸= Im(u2) then there are only finitely
many intersections.

Suppose that x1j ̸= x2j for j ∈ { 1, . . . , k }, and that for different indices
x1j = x2j =: xj . Either y1 = y2 =: y or not: we carry out the proof assuming
the equality, the other one being essentially the same. This is a straightforward
computation using (1.25) and the definitions of Ωτ±. In particular the reader
should be mindful that if x1j ̸= x2j then by definition Ωτ−(x

1
j , x

2
j ) = 0.

I(y ⊗ y)−
p∑
j=1

I(x1j ⊗ x2j ) ≥ ατ−(y)−
1

2

k∑
j=1

lk(x1j , x
2
j )−

p∑
j=k+1

ατ−(xj) =

= −Ωτ+(y)−
1

2

k∑
j=1

lk(x1j , x
2
j )−

p∑
j=k+1

Ωτ−(xj , xj) = ιτ∞(u1,+∞;u2,+∞)−

−Ωτ+(y)− ιτ∞(u1,+∞;u2,+∞)− 1

2

k∑
j=1

lk(x1j , x
2
j )−

p∑
j=1

Ωτ−(xj , xj) =

Now, recall that by (1.2) and Lemma 3.5.3 we have

−ιτ∞(u1,+∞;u2,+∞)− 1

2

k∑
j=1

lk(x1j , x
2
j )−

p∑
j=k+1

ιτ∞(u1, zj ;u
2, zj) = u1 · u2

so that, summing and subtracting
∑p
j=k+1 ι

τ
∞(u1, zj ;u

2, zj) in the equality above
we find

I(y ⊗ y)−
p∑
j=1

I(x1j ⊗ x2j ) ≥ u1 · u2 +
(
ιτ∞(u1,+∞;u2,+∞)− Ωτ+(y, y)

)
+

+

 p∑
j=1

ιτ (u1, zj ;u
2, zj)− Ωτ−(x

1
j , x

1
j )

 = u1 · u2 + ι∞(u1, u2) = u1 ∗ u2

which is what we wanted.

Remark 3.5.8. We remark that in the Lemma we only have an inequality and
not an equality as soon as for some xj := x1j = x2j we have ατ−(xj) < ατ+(xj):
this may happen depending on the parity of the Conley-Zehnder index of xj.

Lemma 3.5.9. In the setup of the previous Lemma,

0 ≤ I(y1 ⊗ y2)− I((x11 ⊗ · · ·x1p)⊗ (x21 ⊗ · · · ⊗ x2p)) (3.41)

Proof. Clearly it suffices to prove that the left hand side of (3.40) is positive or
0, and in turn it is enough to show that the ui are holomorphic for a certain
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choice of almost complex structure on Sp × Σ. Let u represent either pair of
pants ui. Recall that by Lemma (1.3.35) the map

(π, u) : Sp → R× S1 × Σ

is holomorphic for a choice of almost complex structure J̃ on R × S1 × Σ. We
have a map

(π, Id) : Sp × Σ → R× S1 × Σ

satisfying (π, Id)◦ū = (π, u). Denote by 0 the branching point of π: the branched
cover (π, Id) is a local biholomorphism on (Sp \ {0} ×Σ) and may therefore be
used to pull J̃ back to an almost complex structure on (Sp \ {0}×Σ), which we
denote by J . Since the curve u is holomorphic near the branching point (the
Hamiltonian terms vanish outside the cylinder-like ends), the almost complex
structure considered by Faber on R × S1 × Σ is the product almost complex
structure (see the proof of [25, Lemma 2.3]). This implies that the almost
complex structure J may be extended to a smooth almost complex structure on
Sp × Σ, since (π, Id) is holomorphic between the product structures on

R× S1 × Σ and Sp × Σ

by definition. By this argument, we obtain J̄-holomorphicity for both u1 and
u2. All intersections in u1 · u2 will be positive. The term ι∞(u1, u2) is positive
or zero by holomorphicity as well. The Siefring product u1 · u2 is positive or
zero, and by (3.40) we have proved the Lemma.

For the following Lemma we assume that the transversality one needs for
the good definition of the product is achieved, to restrict our attention to pair
of pants of null Fredholm index.

Lemma 3.5.10. The following inequality is verified:

p− 1 ≤ I(y1 ⊗ y1)− I((x11 ⊗ · · · ⊗ x1p)⊗ (x11 ⊗ · · · ⊗ x1p)) (3.42)

Proof. To prove this lemma, we may just simply apply the definition using the
Conley-Zehnder index translation given by the product:

CZτ (y) =

p∑
j=1

CZτ (xj) + 2(2− p− 1)

Divide by 2 and take the floor function: given the elementary inequality

⌈x+ y⌉ ≤ ⌈x⌉+ ⌈y⌉ ∀x, y ∈ R

we obtain ⌈
CZτ (y)

2

⌉
≤

p∑
j=1

⌈
CZτ (xj)

2

⌉
+ 1− p

and this yields the claimed result.

Now Theorem 3.5.5 follows easily from Lemmata 3.5.9 and 3.5.10.
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3.6 Relations to other work and future directions
We finish this chapter mentioning the relations between these results and works
of others. The dynamical Corollary 3.4.6 is in fact a weaker but more elementary
version of [3, Theorem 2]. They prove that given a collection of k orbits of a
Hamiltonian diffeomorphism φ of an aspherical surface Σg,p (if p ≥ 1 they
assume the diffeomorphism to be compactly supported) which draws a braid
b ∈ Bk,g,p, if one perturbs φ to ψ with a small Hofer deformation, there are k
orbits of ψ of braid type b. Essentially, they prove that the pseudoholomorphic
curves in the continuation maps do not intersect, thus providing a braid isotopy.
Some generalisation of Alves and Meiwes’s result have already appeared: see [35]
and [4].

Another fundamental work we would like to mention is the one by Connery-
Grigg [19]. He used the machinery provided by Hofer-Wysocki-Zehnder [32] and
Siefring [67],[66] to deeply analyse the geometry of the Floer complex. On the
one hand he manages to construct singular foliations obtained from the Floer
differential (this is connected to Le Calvez’s work on transverse foliations), and
on the other he finds a topological characterisation of the generators of the
Floer complex representing the fundamental class, generalising previous work
by Humilière, Le Roux and Seyfaddini [33]. Most of the technical lemmata in
[19, Section 3.2.1] may be cast in the language of generating functions, and
the proofs adapted with ease within the Morse-theoretical context we provide,
building on Le Calvez results.

We wish to mention as well that a related linking filtration exists in Em-
bedded Contact Homology and the related theory of PFH. It measures linking
number with respect to a fixed Reeb orbit. So far, to the best of the author’s
knowledge, it has found a few applications: see for instance the paper where
Hutchings introduced it [36] and other works by Nelson and Weiler [55][54].
In particular, Hutchings’s result has been re-proved by Le Calvez using gen-
erating functions, see [43] and its recent generalisation, due to Bramham and
Pirnapasov [13].

The natural question arising from the above connections is then to what
extent generating functions may be used to re-prove these results obtained via
various flavours of Floer theory, and whether they can offer a way to write
simpler proofs (for known and new theorems), at least in the context of low
dimensional dynamics, since they may be defined for Hamiltonian diffeomor-
phisms on any surface (classical for surfaces with genus, for the sphere see [2]).

In some ongoing work, not advanced enough to be reported here, we aim
however to exploit the interaction between the filtration Ip and the higher op-
eration in Floer homology to prove results about the topology of periodic orbits
with larger periods.



Appendix A

The Filtration I in the
Morse-Bott case

In this Appendix we indicate what the self-linking number of a transversely
non degenerate fixed point should be. A Hamiltonian diffeomorphism which
presents only transversely non degenerate critical points will have a Morse-Bott
generating function. The Conley-Zehnder index of a transversely non degenerate
critical point is to be defined, and its place has to be taken by the Robbin-
Salamon index. First we compute the asymptotic values of L the same way as
it was done in Section 3.3. The methods are identical, but we need to keep
track of the nullity of the Hessian. After this, to give a topological meaning to
the number we find, we rewrite it as a function of the Robbin-Salamon index
of the orbit. To do this, after recalling the definition of Robbin-Salamon index,
we prove that the difference of Morse-Bott indices coincides with the difference
of Robbin-Salamon indices.

A.1 I in the Morse-Bott case
Definition A.1.1. Let M be a smooth manifold. A function f ∈ C∞(M ;R) is
said to be Morse-Bott if Crit(f) is a disjoint union of smooth closed submanifolds
(Bj) of M , and the Hessian is transversely non degenerate, i.e.

∀j, ∀x ∈ Bj , kerHf(x) = TxBj

Let Ind(B) denote the signature of the Hessian on a complement of TxBj in
TxM . The Morse-Bott index of Bj is then defined to be

MB(Bj) = Ind(Bj) +
dim(Bj)

2

If x ∈ Bj, we also write MB(x) :=MB(Bj), and since the Morse index of the
Hessian is locally constant on critical submanifolds, this definition is good by
connectedness of Bj.

93
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Remark A.1.2. The fact that the dimension of the critical submanifold is di-
vided by 2 in the definition of the Morse-Bott index depends on the fact that
signatures appearing in the computation of the Robbin-Salamon index, later de-
fined, at the endpoints of a Lagrangian path are also divided by 2. This definition
we give here is nonstandard.

Suppose that a generating function h : E → R for φ ∈ Hamc(R2) con-
structed as in [44, Section 1.12] is Morse-Bott on the interior of its support.
The same proof that implies that L is well defined at the difference of a pair of
critical points implies that it is continuous on a difference of points on critical
submanifolds.

Lemma A.1.3. Let B be a critical submanifold for h. Then L is continuous
on B ×B \∆. It is in particular constant on its connected components.

Proof. Let x ̸= y be two distinct points in B, and assume by contradiction that
L(x−y) is not defined. By Theorem 3.2.5 there is then some ε > 0 such that for
all |t| < ε, L(xt− yt) is defined. But x and y belong to the critical submanifold
B, and xt = x, yt = y for all real times, contradiction.

Our aim is to associate a number I to a transversely non degenerate fixed
point of φ.

Definition A.1.4. Let φ ∈ Hamc(R2), and x ∈ Fix(φ). The fixed point x is
transversely non degenerate if for any V complement of Span ẋ(0) in R2, dxφ|V
does not have 1 as eigenvalue.

The critical point of h associated to a transversely non degenerate fixed point
will belong in a critical submanifold of h. Let C(h) be the family of connected
critical submanifolds of h. We want to state a new definition for I, holding in
the case of Morse-Bott functions:

I : C(h)× C(h) → Z

(B,C) 7→ L(x− y) for any x ∈ B, y ∈ C, x ̸= y

This is a good definition by the lemma above. We are going to prove that an
inequality as in Lemma 3.3.8 still holds.

We can repeat the proof of Lemma 3.3.4 almost word for word, to find

Lemma A.1.5. Given a pair of gradient lines converging to a point z ∈ B,
defining the function v as in Lemma 3.3.4, we have v(∞) ∈ TzW

s(z) ⊆ TW s(B).

Proof. Repeat the same argument as in Lemma 3.3.4 in Morse-Bott charts.
One only needs to check that v(∞) ̸∈ TzB: this is achieved just remarking that
αi(t), βi(t) → 0 when λi = 0 as well.

Now, as a consequence again of Proposition 3.3.1, any vector in TB has a
lower value of L compared to any vector in TW s(B): this motivates the following
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definition. Remember that n ∈ N here refers to the length of the decomposition
of φ as a product of twist maps.

I : C(h)× C(h) → Z, (B,C) 7→



L(B,C) B ̸= C

⌊
n
2

⌋
−
⌊
MB(B)+ dimB

2

2

⌋
B = C, 2 ̸ |n

⌊
n
2

⌋
−
⌈
MB(B)+ dimB

2

2

⌉
B = C, 2|n

Obviously this definition generalises the previous one, and we have the fol-
lowing property.

Definition A.1.6. Let A,B,C be three connected critical manifolds for a gen-
erating function h as above, not necessarily distinct, and assume that there is a
gradient line negatively asymptotic to A and positively asymptotic to B. Then:

I(A,C) ≤ I(B,C)

A.2 Morse-Bott and Robbin-Salamon indices

A.2.1 The Robbin-Salamon index

Let us recall the definition of Robbin-Salamon index from [63]. It is a generali-
sation of the Maslov index for loop, whose definition may for instance be found
in [72, Section 1].

Let Λ be a Lagrangian in R2n, t 7→ Λ(t) a path of Lagrangians such that
Λ(0) = Λ ∈ Gr(Lag(R2n)). We denote by Gr(Lag(R2n)) the Lagrangian Grass-
mannian in R2n. Then

Proposition A.2.1 (Robbin, Salamon [63]). Let W be a Lagrangian comple-
ment of Λ in R2n, v ∈ Λ and t 7→ w(t) ∈ W defined for small t so that
v + w(t) ∈ Λ(t). Then the form

Q(Λ, Λ̇(0))(v) :=
d

dt ↾t=0
ω(v, w(t))

is independent of the choice of W . Moreover, it is invariant under application
of a linear symplectomorphism to Λ.

Now, for a fixed Lagrangian subspace V of R2n we may define its Maslov
cycle Σ(V ): it is the set of Lagrangian subspaces intersection V non trivially.
The set Σ(V ) is in fact stratified by the dimension of the intersections. Assume
now again that t 7→ Λ(t) is a path in Lagrangian subspaces. At every t such
that Λ(t) ∈ Σ(V ) we define the crossing form

Γ(Λ, V, t) := Q(Λ, Λ̇(t))|Λ(t)∩V (A.1)
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A crossing is called regular if Γ(Λ, V, t) is non degenerate. It is shown in [63,
Lemma 2.2] that any Lagrangian path is homotopic rel endpoints to a path with
only regular crossings.

Definition A.2.2. Assume Λ has only regular crossings. The Robbin-Salamon
index for the path Λ, defined on [a, b], with respect to the subspace V as

RS(Λ, V ) :=
1

2
signΓ(Λ, V, a) +

∑
t|Λ(t)∈Σ(V )

signΓ(Λ, V, t) +
1

2
signΓ(Λ, V, b)

Remark A.2.3. Warning: sign here denotes the difference between the number
of negative and the number of positive eigenvalues1 of a Gram matrix for Q.

The Robbin-Salamon index has several powerful properties, most notably:

(Homotopy) Two paths of Lagrangian subspaces are homotopic with fixed endpoints if
and only if they have the same Robbin-Salamon index.

(Catenation) If the path of Lagrangian subspaces Λ : t 7→ Λt is defined on an non empty
interval [a, b] and a < c < b, then

RS(Λ, V ) = RS
(
Λ|[a,c], V

)
+RS

(
Λ[c,b], V

)
(Zero) If the path of Lagrangian subspaces t 7→ Λt is defined on an non empty

interval [a, b] and the dimension of the intersection Λt ∩ V is constant,
then RS(Λ, V )=0.

(Localisation) If V = Rn × {0} and Λ(t) = Graph(A(t)) is Lagrangian, t ∈ [a, b], then

RS(Λ, V ) =
1

2
signΓ(A(b))− 1

2
signΓ(A(a))

We refer to [63] for an exhaustive discussion of these and other properties of
RS.

Definition A.2.4. The Robbin-Salamon index of a path of linear symplecto-
morphisms ψ : t 7→ ψ is defined to be

RS(ψ) := RS(Graph(ψ),∆)

where ∆ is the diagonal of R2n+2n equipped with the symplectic form −ω ⊕ ω.

If ψ is the linearisation at a non degenerate fixed point of a Hamiltonian
isotopy, we recover the Conley-Zehnder index.

1This is the opposite of the definition in [63], we adopt it for consistency with the above
results.
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O1

O2

γ(t)

a

b

τ(t) = Tγ(t)L2

L1

Figure A.1: The path γ.

A.2.2 The differences of indices coincide
We want to prove the following.

Proposition A.2.5. Let h be a Morse-Bott generating function for a (therefore)
transversely non degenerate Hamiltonian diffeomorphism φ ∈ Hamc(R2n, ω).
Given critical points x, y ∈ Crit(h) associated to orbits γx and γy, one has

RS(dγxφ)−RS(dγyφ) =MB(x)−MB(y)

To do so, we repeat the construction in [72, Section 4] adapting it to this
more general context using the Robbin-Salamon index. Let h : R2n × Rk →
R a Morse-Bott generating function for a compactly supported Hamiltonian
diffeomorphism φ of R2n. Denote by L1 = 0T∗(R2n×Rk) and L2 = Gr(dh): they
are both Lagrangians in T ∗(R2n × Rk), and the Lagrangian generated by h is
the image of L2 under symplectic reduction over the coisotropic submanifold

W := T ∗R2n × RN × {0}

Let O1, O2 be two critical manifolds of h: they intersections, still denoted
by the same name, between L1 and L2. Assume that O1 and O2 are either
points (corresponding to non degenerate fixed points of Hamiltonian diffeomor-
phisms) or circles (corresponding to S1-families of transversely non degenerate
fixed points)2. Take any a ∈ O1, b ∈ O2, a ̸= b, and consider a curve γ contained
in L2, γ(0) = a, γ(1) = b. The Lagrangian path

τ(t) = Tγ1(t)L1 ∀t ∈ [0, 1]

defines a map τ : [0, 1] → Gr(Lag(CN+2n)). See Figure A.1 for a depiction of γ
and τ .

Define then
m′(O1, O2) = RS(τ,R2n+N ) ∈ 1

2
Z

2The following proofs however still work without assumptions on the dimension of O1 and
O2
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By (Catenation) and (Zero) axioms the index m′(O1, O2) does not depend on
the choice of the points a, b on the intersections, let us see it for a (case of b
being identical). If a′ is another point in O1, we may connect it to a by a path
in O1. Along this path, the tangent spaces are constantly equal to RN+2n, and
therefore the path has 0 Robbin-Salamon index by (Zero). By (Catenation) now
the index of the chosen path coincides with that of γ. We also show that the
number m′(O1, O2) does not depend on the choice of γ either. In fact, every
two γ are homotopic through an ambient homotopy because π1(R2n) = 0, and
this ambient homotopy provides us with a homotopy between the Lagrangian
paths: by the (Homotopy) axioms, the Robbin-Salamon indices coincide.

We are going to prove now that on one side

m′(O1, O2) =MB(O1)−MB(O2)

and on the other that

m′(O1, O2) = RS(dγ2φ)−RS(dγ1φ)

where γi is the orbit (non degenerate or transversally non degenerate) associated
to the Oi. Let us prove the former equality.

We need the following

Proposition A.2.6. Let W := T ∗R2n×RN ×{0}, τ be as above, and τ ′ be the
reduction of τ along W . Then

RS(τ,RN+2n) = RS(τ ′,R2n)

To show it we are going to apply to Lemma A.2.7 (which we shall prove
shortly). This will allow us to reduce the problem to the simpler case in which
the generating function has no fibre variables. Before proving Lemma A.2.7, let
us show that to prove stability under reduction of the Robbin-Salamon index of
τ we just need to verify stability at one endpoint of the path at most.

Assume, to start, that O1 and O2 are points and the intersections are trans-
verse: this is the case in which h is Morse. Then by (Zero) and (Catenation)
axioms m′(O1, O2) is equal to the Maslov index of a loop of Lagrangians: con-
sider a path γ1 : [0, 1] → L1 with γ1(0) = b and γ1(1) = a. We can use it to
define a Lagrangian path τ1 with the properties that

τ1(0) = TbL2, τ1(1) = TaL2, τ1(t) ⋔ Tγ1(t)L1

Let µ denote the usual Maslov index (a definition may be found in [72, Section
1]): then

RS(τ,R2n+N ) = RS(τ#τ1,R2n+N ) = µ(τ#τ1) (A.2)

where we used the (Catenation) and (Zero) axioms, together with the fact that
the Robbin-Salamon index recovers the Maslov index in the case of loops. and
[72, Proposition 3] implies our Proposition A.2.6. We now drop the Morse
assumption.
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The second easiest case is found when both intersections, O1 and O2, have
the same dimension. In such a case we may repeat the argument we just used:
define a Lagrangian path τ1 such that τ#τ1 is a loop and the intersection
τ1(t) ∩ R2n+N has constant dimension (for the existence of this loop we use
[63, Corollary 4.4]). This still implies (A.2), and as before [72, Proposition 3]
proves Proposition A.2.6.

Assume now that O1 is a transverse intersection, and O2 is a circular Morse-
Bott intersection (the roles are symmetrical and the argument may be repeated
swapping them). Construct a Lagrangian path τ1 such that

τ1(0) = TbL2, ∀t ∈ (0, 1]τ1(t) ⋔ R2n+N ), τ1(1) = TaL2

Such a path may be constructed by [63, Corollary 4.4], together with a result
the fact that the set of Lagrangian subspaces with 1-dimensional intersection
with a fixed one has positive codimension. We apply once again [72, Proposition
5], finding

RS(τ#τ1,R2n+N ) = µ(τ#τ1)

The path τ1 now however has a crossing at time 0, which contributes by ± 1
2 to

the total Robbin-Salamon index. Denote by Q the intersection form of τ1 at
time 0. We obtain

RS(τ,R2n+N ) +
1

2
signQ = µ(τ#τ1)

Since the right hand side of the equation is known to be stable under symplectic
reduction by [72, Proposition 3], to prove Proposition A.2.6 it suffices to check
that signQ also is.

Lemma A.2.7. Let L1 = 0T∗(R2n×Rk), L2 := Graph(dh) be Lagrangian sub-
manifolds in T ∗(R2n × Rk) and τ a Lagrangian path as above. Assume that
L1 and L2 intersect in a circle C. Let b ∈ C, Q denote the crossing form at
b for TbL2 with respect to TbL1. Let W denote the coisotropic submanifold of
T ∗(R2n × Rk) given by

W := T ∗R2n × RN × {0}

Then
signΓ

(
τ,R2n+N , 1

)
= signΓ

(
τ ′,R2n, 1

)
where τ ′ is the Lagrangian path obtained from τ via symplectic reduction over
W .

Proof. Clearly the integrable orthogonal distribution at the intersection point
is given, in the chosen trivialisation, by W⊥(b) = {0} × {0} × RN × {0}.

We first prove that we can identify the intersection with its reduction. Since
RN+2n ⊂ TbW , we have (the apostrophe denoting the reduction):

(RN+2n ∩ TbL2)
′ := (RN+2n ∩ TbL2 ∩ TbW ) +W⊥(b)/W⊥(b) =

= (RN+2n ∩ TbL2) + {0} × {0} × RN × {0}/{0} × 0× RN × 0
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Since now TbL1 ∩ TbL2 ⊂ R2n × {0} × {0} × {0}, then

TbL1 ∩ TbL2 ∩ ({0} × {0} × RN × {0}) = {0}

We can conclude that

(TbL1 ∩ TbL2)
′ ∼= TbL1 ∩ TbL2 (A.3)

The dimension of the intersection of the tangent spaces being 1, we need
to check that the two signatures coincide. The reduction of L1, L′

1 is the zero
section of T ∗R2n, while the one of L2, L′

2 is the Lagrangian that h generates.
We want to compute the signature of the quadratic form associated to the
intersection between Tb′L′

1 and the horizontal Lagrangian Tb′M = TbL
′
2. Choose

a Lagrangian complement V ′ for TbL′
2 in Tb′T

∗R2n: it extends to V := V ′ ×
V1, a Lagrangian complement for TbL2. The space V1 is then a Lagrangian
complement for the second factor of TbL2 with respect to the splitting

Tb(T
∗(R2n × Rk)) = Tpr1bT

∗R2n ⊕ Tpr2bT
∗RN

Now everything is set: consider (notations as above) the path of Lagrangian
spaces τ ′. For any v′ ∈ Tb′L

′
1 ∩ Tb′L′

2 there is then a unique w′(t) ∈ V ′ such
that v′ + w′(t) ∈ τ ′(t). Remark that by the isomorphism (A.3) the preimage
v of v′ in TbL1 ∩ TbL2 is well defined. Then if ω′ is the symplectic form on
the reduction T ∗R2n, by naturality (pull-back of the reduced symplectic form
coinciding with the restriction on the coisotropic manifold) for any preimage of
w′(t), say w(t) ∈ V ,

Γ
(
τ ′,R2n, 1

)
(v′) =

d

dt ↾t=1
ω′(v′, w′(t)) =

d

dt ↾t=1
ω(v, w(t))

The right-hand side is in fact the crossing form Γ
(
τ,RN+2n, 1

)
(v): while the

vector w(t) a priori does not realise v+w(t) ∈ τ(t), if w̄(t) does satisfy v+w̄(t) ∈
τ(t), then remark that v is ω−orthogonal to w(t)−w̄(t). The symplectic form ω
is in fact the direct sum of the canonical forms on T ∗R2n and T ∗RN , w(t)−w̄(t)
belongs in the space {0}×{0}×RN ×RN (their difference is reduced to 0 under
reduction) and v ∈ Tb(T

∗R2n)× {0} × {0}.

Remark A.2.8. Clearly, if TbL1 and TbL2 have intersection of dimension dif-
ferent from 1, the result of the Lemma above is still true because of (A.3).

We have finished the proof of Proposition A.2.6 as well. We are now reduced
to prove the equality in the case in which the generating function has in fact no
fibre variables. From now on N = 0, and L2 is now a graph in T ∗R2n. Define
the path τ as above: we have to compute

RS(τ,R2n)

Clearly now, if Hh(γ(t)) is the Hessian of h at γ(t),

Tγ(t)L2 ∩ R2n = Tγ(t)Graph(dh) ∩ R2n ̸= {0} ⇔ detHh(γ(t)) = 0
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The count is going to be exactly the same as in the Morse case, since intersections
correspond to times in which the Hessian becomes degenerate: the intersection
is positive if an eigenvalue from positive becomes negative, and negative in the
opposite case, by [63, Theorem 1.1 (2)]3. This count yields

RS(τ,R2n) =MB(b)−MB(a) (A.4)

The path τ up to homotopy rel endpoints has in fact only regular crossings: this
implies that the signs of the eigenvalues which vanish at a crossing time need to
change, and also that if the dimensions of O1 and O2 are different the change
in the dimension of the intersection happens at the beginning or at the end of
the path. Remark that we are not assuming that the eigenvalues change sign
one at a time: this would mean requiring the crossings to be simple, which is a
stronger condition.

Remark A.2.9. From the proof above we see the reason why the Robbin-
Salamon index is defined this way (with the dimension of the critical manifold
to be divided by 2): this condition is necessary for Equation (A.4) to hold, since
the eigenvalues dropping to 0 at the extremities contribute for a half.

We now show that

m′(O1, O2) = RS(dγ1φ)−RS(dγ2φ)

To achieve it, we make use of perturbations defined in [17] and of the previous
point to prove the result without fibre variables: let us suppose for instance that
both O1 and O2 are both Morse-Bott circles (the other cases are similar but eas-
ier). The function h then represents a transversely non degenerate Hamiltonian
orbits for a certain Hamiltonian diffeomorphism φ generated by a Hamiltonian
H. Then we can perturb locally H using a small Morse function on the circle
with exactly one maximum and one minimum: the perturbed Hamiltonian Hδ

generates a non degenerate diffeomorphism, and the two orbits are decomposed
into two couples of non degenerate orbits, each term of the couple corresponding
to either the maximum or the minimum of the Morse function. Let a and b be
respectively on O1 and O2 be chosen in such a way that after the perturbation
(i.e. Hamiltonian deformation of L2) they both correspond to the minimum of
the Morse function. Let L2,δ be the perturbed Lagrangian: then a, b ∈ L2,δ∩L1.
Now, by the result of Viterbo in [72] and using his notation,

m(a, b, L1, L2,δ) = CZ(γ2,δ)− CZ(γ1,δ)

where γi,δ are the perturbed orbits, and m is computed using a path on the
perturbed Lagrangian (it is the Maslov index of a Lagrangian loop, whose con-
struction we mimicked here). These indices correspond to the Robbin-Salamon
indices by [63, Remark 5.4]

CZ(γi,δ) = RS(dγi,δφ), i = 1, 2

3Some care needs to be taken when comparing conventions about the signature. In [63],
the signature is defined as the difference between the number of positive and the number of
negative eigenvalues, here we are taking the opposite convention.
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Let τδ be the path we use to compute this index.
We apply [17, Proposition 3.2] to have

RS(dγ2φ)−RS(dγ1φ) = CZ(γ2,δ)− CZ(γ1,δ)

The homotopy s 7→ Hsδ, for s ∈ [0, 1], chosen a path between a and b
contained in L2, gives then a homotopy with fixed endpoints between the La-
grangian path τ we have already defined, and the concatenation of three paths,
the first τa joining TaL2 to TaL2,δ, the one in the middle being τδ, and the third
one the inverse of τ b joining TbL2 to TbL2,δ. We use [17, Proposition 3.2] again
to see that

RS(τa,R2n) = RS(τ b,R2n)

These indices in fact only depend on the Morse indices of the critical points
of the perturbation corresponding to the orbits γi,δ. We can now apply the
(Catenation) and the (Homotopy) axioms to conclude that

m′(O1, O2) = CZ(γ2,δ)− CZ(γ1,δ)

This ends the proof in the case for O1 and O2 both circles.
To cover the one where only O1 is a circle, perturb only O1 and repeat the

same argument (of course, in this case we are not going to have cancellations).
This ends the proof of Proposition A.2.5.

A.2.3 I and the Robbin-Salamon index
The results in the previous section imply that we can again normalise the
Robbin-Salamon index in a way that it corresponds to the Morse-Bott index
as we did for the Morse and Conley-Zehnder indices in (3.28). We set then,
for a Morse-Bott generating function h of a diffeomorphism φ with connected
compact critical submanifold B and x ∈ B

MB(x)− σ(h) = RS(γx) + 1 (A.5)

Remark that if the dimension of B is 1, i.e. it is a circle, γx(0) is a part of an
S1-family of fixed points (even if φ is not autonomous), whereas if γx is isolated
and x ∈ B, then dimB = 0. We can then recover the dimension of the critical
submanifold purely by dynamical information. Replacing MB in the definition
of I using (A.5) we can define

I : Fix(φ)× Fix(φ) → Z, I : (γx, γy) 7→

{
1
2 lk(γx, γy) γx ̸= γy

−
⌈
RS(γx)+

dimB
2

2

⌉
γx = γy, x ∈ B

This formula is consistent with the Morse case.



Appendix B

A Generalisation of
Khanevsky’s Proof

In this section we are going to prove Theorem 2.2.6 in the restricted case where
k = 2 with the tools contained in Section 1.3.3. The methods here will also
generalise verbatim to higher numbers of strands, but to diffeomorphisms of
certain braid types only.

M. Khanevsky in [41] proved that given a non displaceable disc contained in
an annulus, the Hofer norm of a diffeomorphism fixing such a disc (not neces-
sarily pointwise) grows at least linearly with the absolute value of the rotation
number of the diffeomorphism. As we see in this section, Khanevsky’s proof may
be generalised in an elementary way to our setting: we are going to consider a
two disjoint discs in D whose boundaries constitute a premonotone lagrangian
configuration L, and give lower bounds on the Hofer norm of an element in
HamL(D, ω) using the linking number of the induced braid.

Let D ⊂ C be the two dimensional unit open disc, with area form ω nor-
malised such that

∫
D ω = 1. Let D1, D2 be two open disjoint discs in D

such that neither is displaceable in the complement (the area condition reads
A = Area(Di) ∈

(
1
3 ,

1
2

)
). Let Li := ∂Di, and L = L1 × L2, and assume

moreover that φ(Di) = Di. Remember that for a compactly supported Hamil-
tonian diffeomorphism φ ∈ HamL(D, ω) we can define its braid type, let us
call it b(φ,L) ∈ B2. Since B2 is isomorphic to Z via the linking number, we
identify b(φ,L) with 1

2 · lk(b(φ,L)) (the factor of 2 is needed since in our defini-
tion of linking number agrees with the group-theoretic one, and the elementary
loop t 7→ exp(2πit) has linking 2 with the origin of the complex plane). Since
φ(Di) = Di, 1

2 · lk(b(φ,L)) ∈ Z.
In a similar way as one can find in [41], we define the set

Sn =

{
φ ∈ HamL(D)

∣∣∣∣ φ(Di) = Di,
1

2
lk(b(φ,L)) = n

}
and if φ̂ is a Hamiltonian diffeomorphism such that φ̂ ∈ S1, we have a decom-
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position Sn = φ̂nS0. We want to prove that if φ ∈ Sn then its Hofer norm
satisfies

∥φ∥ ≥ O(n)

and to do this, we show that there is a quasimorphism which is Hofer-Lipschitz,
strictly positive on φ̂ and zero on S0.

Consider polar coordinates on the disc, so that the symplectic form reads
ω = 1

π r dr∧ dθ. Up to conjugation by a symplectic diffeomorphism (which does
not change the computations of Hofer norms) we can suppose that the picture is
symmetric: the two discs Di are found in the halfplanes of positive and negative
x. Let φ̂ be a compactly supported smooth approximation of a rotation of 2π,
and a generating Hamiltonian is for instance

H(r, θ) = ρ(r2)r2

where ρ is a plateau function which is 1 outside a small neighbourhood of 1 (ρ
will in general depend on the area of Di, and we choose it in a way that (r, θ) 7→
ρ(r2) is equal to 1 in a neighbourhood of D1 ∪ D2). Let js be a symplectic
embedding from D into a sphere of area 1 + s, which we denote with S2(1 + s).
It induces a Hofer 1-Lipschitz injection js ∗ : Hamc(D) → Ham(S(1+s)) given by
extension by 0 of the Hamiltonians. Remark that the configuration Ls := js(L)
is monotone in S2; let ηs be its monotonicity constant that appears as an η in
Equation 1.17.

The quasimorphism on Hamc(D) of our choice is

Q2 := (µ1
2,η0 ◦ j0 ∗ + Cal)−

(
µ3A
2,η3A−1

◦ j(3A−1) ∗ +
1

3A
Cal
)

Its Hofer Lipschitz constant is 2 (as sum of two Hofer 1-Lipschitz functionals)
and we may see as follows that they are furthermore C 0-continuous by the
criterion by Entov-Polterovich-Py (in [23], see also [21]). We apply the (Support
Control) property and the fact that we may choose the discs we use to compute
the quasimorphisms µak,η to see that Q2, when applied to any diffeomorphism
supported on a disc of area less than A, vanishes: an application of the criterion
above concludes the argument.

Write Q2 = µ′
0 − µ′

3A−1, where

µ′
s = µ1+s

2,ηs
◦ js ∗ +

1

1 + s
Cal

Let us compute Q2(H): for each of the µ′
s by the (Invariance) property we

can use a configuration of two circles, both contained in js(D) and whose centres
coincide with js(0). The area requirement translates to the condition that the
radii associated to the two circles are r =

√
A and r =

√
1 + s−A, and . Then

by (Lagrangian Control), after mean-normalising H, we find:

µ′
s(φ̂) =

s− 1

2
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so that
Q2(φ̂) = −1

2
− 3A− 1− 1

2
=

1− 3A

2

Following the steps of [41], and assuming that Q2 does vanish on S0 (we are
going to later show that this is indeed the case), let us prove that if φ = φ̂nψ,
then Q2(φ) = Q(φ̂n) = nQ(φ̂). We have Q2(φ) = Q(φ̂n) + D(φ), where
D(φ) ∈ R is bounded in modulus by the defect of the quasimorphism Q (in
particular, it is bounded uniformly on φ). Since Q2 is homogeneous, for all
positive integers k

Q2(φ) =
Q2(φ

k)

k
=
Q2(φ̂

nk) +D(φk)

k
= Q2(φ̂

n) +
D(φk)

k

and taking the limit shows that Q2(φ) = nQ2(φ̂) (recall that D(φk) is bounded
on k). As Q2 is Hofer 2-Lipschitz, we conclude that

∥φ∥ ≥ |nQ2(φ̂)

2
| ≥ 3A− 1

4
n

Remark B.0.1. We immediately see that our lower bound is an increasing
function of A, which is zero in the limit case in which A = 1

3 : when the discs
are displaceable, we cannot say anything this way about the Hofer norm of the
diffeomorphisms. This is to be expected: for k = 2, by [46] (see Remark fol-
lowing his Question 5) if the two discs are displaceable there exists a family
of hamiltonian diffeomorphisms, whose Hamiltonians are supported away from
one of the two discs, with bounded Hofer norm but whose braid type may be
arbitrarily linked.

It is left to check that Q2 vanishes on S0. Using the (Hofer Lipschitz) and
(C 0−continuity) properties of Q2, it suffices to prove that Q2(S

′
0) = 0, where

S′
0 is defined as the subgroup of Hamiltonian diffeomorphisms that induce the

identity on a neighbourhood of ∂D∪∂D1∪∂D2 ([41], Lemma 2). The argument
is essentially the same as in [41], adapted to our quasimorphism Q2. To compute
Q2, by (Invariance), this time we choose the obvious configuration Li = ∂Di.
Now, if φ ∈ S′

0, it can be decomposed into φ = φD1
◦ φD2

◦ φP , where φDi
is

supported on Di and φP on P = D \ (D1 ∪D2).
Since the boundaries of theDi are connected, φDi

|Di
∈ Hamc(Di) ⊆ Hamc(S2\

(L1 ∪ L2)), and by (Lagrangian Control) Q2(φDi) = 0, thus it is left to show
that Q2(φP ) = 0.

To prove this fact, as mentioned in [41] (see also [26]), it is possible to show
that π0(Sympc(P )) = Z3, and that it is generated by three Dehn twists around
the three boundary components: it is our task to show that if we apply an
arbitrarily small Hofer deformation of φ, taking place in Hamc(D), we can force
φP |P to in the connected component of the identity of Sympc(P ). A Dehn twist
around an embedded circle in D can be represented by a Hamiltonian whose
Hofer norm is dependent on the diameter of the normal neighbourhood of the
circle that we choose. In particular, we may represent the Dehn twists compo-
nents in [φP |P ] ∈ π0(Sympc(P )) corresponding to curves near the boundaries of
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Di using ψ ∈ Hamc(D), with ∥ψ∥ < ε; as for the component corresponding to a
curve near ∂D, it cannot appear in the decomposition since φP |P is the restric-
tion of an element in S′

0 (the presence of such factor forces the linking number
to be k, where k is the number of these Dehn twists counted with signs). As a
result, ψ−1 ◦ φP |P is in the connected component of the identity in Sympc(P ),
and it is enough to prove that Q2(ψ

−1 ◦φP |P ) = 0 by Hofer Lipschitz property
of Q2.

ψ−1 ◦ φP |P is not necessarily in Hamc(P ), which would be enough to con-
clude; it may be however deformed to an element in Hamc(P ) without changing
the value of Q2. Let us consider the Flux homomorphism

S̃ympc(P ) → H1
c (P ;R)

(definition and properties may be found in [49]) and let us compute it on two
Hamiltonian isotopies defined by Ki where:

• Ki are supported on a small neighbourhood of Di, equal to 1 in small
neighbourhoods of Li (here the Li constitute the premonotone lagrangian
configuration we had at the beginning of the section, it is not the pair of
concentric circles on S2 we are using to compute the quasimorphism);

• supp(K1) ∩ supp(K2) = ∅;

• supp(Ki) ∩ supp(ψ−1 ◦ φP |P ) = ∅ for i = 1, 2 and all real times s;

Since the two images Flux(φtKi
) are linearly independent (they are zero on

one generator of H1(P, ∂P ;R) each) and dim(H1
c (P ;R)) = 2 there exist two real

times si ∈ R such that

Flux(φs1K1
|P ◦ φs2K2

|P ◦ (ψ−1 ◦ φP |P )) = 0

and φs1K1
◦φs2K2

◦ (ψ−1 ◦φP ) may be represented by a Hamiltonian supported in
P . Moreover,

Q2(φ
s1
K1

◦ φs2K2
◦ (ψ−1 ◦ φP )) = Q2(ψ

−1 ◦ φP )

Indeed, since all the supports are disjoint, the three diffeomorphisms com-
mute, therefore Q2 is additive on them and

Q2(φ
si
Ki

) =
1

4
si −

1

4
si = 0

Now we finish by remarking that

0 = Q2(φ
s1
K1

◦ φs2K2
◦ (ψ−1 ◦ φP )) = Q2(ψ

−1 ◦ φP )

by (Support Control) property used on the premonotone lagrangian configura-
tion L1 × L2.

Summing up, given a diffeomorphism in S0, it can be Hofer and C 0-deformed
to an element in S′

0, changing by an arbitrarily small amount the value of Q2.
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We then showed that in fact Q2(S
′
0) = 0, since any symplectic diffeomorphism

in S′
0 is Hofer-close to one whose restriction to P is symplectically isotopic

to the identity of P . After this small perturbation, we applied a deformation
without changing the value of Q2, arriving to a Hamiltonian diffeomorphism
with compact support in P , whose Q2 value is necessarily 0 by an explicit
computation.

Remark B.0.2. It is possible to compare our estimates with the ones Khanevsky
gives in [41]: if n is the rotation number of a non displaceable disc in an annulus
of area 1 under an isotopy between the identity and φ ∈ Hamc(S1 × (0, 1)), he
shows that

∥φ∥ ≥ 2A− 1

2
|n|

To be able to compare the two estimates, one should remember that we always
assumed our unit disc to have area 1, whereas Khanevsky only assumes the area
of the annulus to be 1. In terms closer to our setup, this means that Khanevsky
finds such estimate (up to a small change due to area normalisation) for Hamil-
tonian diffeomorphisms of the disc which may be represented by Hamiltonians
supported away from a smaller disc, without further restrictions on the area of
the latter disc. We may see then that we weaken the restriction on the support
of the Hamiltonians in a considerable way, but we have to ask that the two small
discs have the same area (and our estimate is less good than the one given by
Khanevsky).

Remark B.0.3. This proof generalises to a higher number of strands, but will
not help to compute the Hofer norm of a diffeomorphism with arbitrary braid
type. Let φ ∈ HamL(D, ω): for the proof above to hold we would need b(φ) to be
juxtaposition of braids σ1 · · ·σp, such that there exist p disjoint discs (Di)i=1,...,p

in D, satisfying the following properties:

• each Di contains ki circles in L, (Lij )j=1,...,ki ;

• φ|Di
= Di, and is there conjugated to a rotation;

• The circles in (Li1 , . . . , Liki
) realise the sub-braid σi.
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Titre : Tresses en dynamique hamiltonienne de basse dimension
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Résumé : Dans cette thèse nous étudions les
systèmes hamiltoniens en nous appuyant sur la topo-
logie de leurs orbites fermées. Les résultats présentés
portent, d’un côté, sur des propriétés des fonctions
génératrices associées à un difféomorphisme hamil-
tonien particulier, et de l’autre sur la distance d’Ho-
fer entre deux difféomorphismes qui réalisent des
tresses de types différents.
Dans le premier contexte, on s’appuiera sur des
résultats de Patrice Le Calvez pour montrer que toute
fonction génératrice d’un difféomorphisme hamilto-
nien à support compact du plan (à stabilisation près)
admet une filtration en enlacements dans la deuxième
puissance tensorielle du complexe de Morse. Par “fil-
tration en enlacements” nous entendons une filtra-
tion qui a toute paire de points critiques associe un
nombre entier, et telle que lorsque les deux points
sont distincts la valeur associée est exactement le
nombre d’enlacement des deux orbites correspon-

dantes aux points critiques. Il est possible de définir
une telle filtration aussi dans le cadre de la théorie de
Floer hamiltonienne, et d’étudier son comportement
par rapport au produit en homologie. Les résultats de
l’auteur dans cette direction n’ont pas encore été pu-
bliés.
De l’autre côté, on considère l’ensemble de
difféomorphismes hamiltoniens à support compact
d’une surface à bord qui préservent une configuration
de cercles prédéterminée. Nous donnons des esti-
mations de l’énergie d’Hofer d’un tel difféomorphisme
qui se basent sur la complexité d’un type de tresse
que nous pouvons lui attribuer. L’outil utilisé ici est
la théorie d’Heegaard Floer quantitative, récemment
développée par Cristofaro-Gardiner, Humilière, Mak,
Seyfaddini et Smith. Les résultat dans cette direction
sont déjà contenus dans un travail de l’auteur, et dans
une collaboration avec Ibrahim Trifa.

Title : Braids in Low-Dimensional Hamiltonian Dynamics

Keywords : Braids, Hamiltonian systems, generating functions, Floer theory, Hofer geometry

Abstract : In this thesis we study Hamiltonian sys-
tems using the topology of their closed orbits. The re-
sults we present deal, on the one hand, with proper-
ties of the generating functions associated with a par-
ticular Hamiltonian diffeomorphism, and on the other
hand, with the Hofer distance between two diffeomor-
phisms that realise braids of different types.
In the first context, we will rely on results by Patrice
Le Calvez to show that any (up to stabilisation) gene-
rating function of a Hamiltonian diffeomorphism with
compact support in the plane admits a filtration into
the second tensor power of the Morse complex. By
“linking filtration” we mean a filtration which asso-
ciates an integer with any pair of critical points, and
such when the two points are distinct the associated
value is exactly the linking number of the two orbits

corresponding to the critical points. It is possible to de-
fine such filtration in the context of Hamiltonian Floer
theory as well, and to study its behaviour with respect
to the product in homology. The author’s results in this
direction are still unpublished.
On the other hand, we consider the set of Hamilto-
nian diffeomorphisms with compact support of a sur-
face with boundary which preserves a predetermined
configuration of circles. We give estimates of the Hofer
energy of such a diffeomorphism based on the com-
plexity of a type of braid that we assign to it. The tool
we use here is quantitative Heegaard-Floer theory,
recently developed by Cristofaro-Gardiner, Humilière,
Mak, Seyfaddini and Smith. The results in this direc-
tion are already contained in a work by the author, and
in one in collaboration with Ibrahim Trifa.
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