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When talking about vector spaces, quotients and subspaces can be identified,
although in a non-canonical way, hence it might be difficult to distinguish the
two notions. The aim of this document is to convince you that they are not the
same.

Warning: I am not going to define all terms properly, as it would take
too long and distract you from what you should try to understand. Because of
this, do not focus too much on the technicalities. Ideally, you should be able to
spend less than 10 minutes on this just to grasp the basic ideas, nothing more.

To get rid of this identification, we change “category” of objects. Let us start
from scratch, working in Set. We shall consider sets and morphisms between
sets, aka functions. Since we endow the sets with no further structure, the
functions have no additional requirements: they simply map one element to
another, without rules.

What is then a subset? Let A be a set, a subset can be seen as a pair (B, i)
where i : B ↪→ A is an injection. The advantage of this approach is that way
we can easily identify subsets which are isomorphic, which in the category Set
means that they have the same cardinality.

A quotient, instead, comes with a function defined in the “dual” way. Given
an equivalence relation R on the set A, the quotient C := A/R is in fact a pair
(C, p), where p : A � C is the (surjective) quotient projection.

Now that the two notions are defined, we are going to see, in practice how
they differ. A standard procedure to check that two objects are different in
mathematics is to look at functions to and from such objects.

Let now D be a set, f : A → D be any function (to avoid traps A,D 6= ∅).
How do we induce from f functions from B and C? To find the one on B, one
can simply take the restriction f |B ; in our language it corresponds to taking
f ◦ i: the following diagram is then commutative:

B A

D

i

f |B
f

With quotients we are not that lucky: what we want to achieve is to define
a certain f : C → D such that if [a] denotes the equivalence class of a ∈ A,
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f([a]) = f(a): this again is equivalent to requiring that the following diagram
be commutative:

A C

D

p

f
f

The problem here is the good definition of f : if aRb, we need to have
f(a) = f(b) to define this canonically. “Canonically” means that there are no
choices involved, it is entirely natural. We say that f needs to be constant on
the equivalence classes. Now, suppose it is not: we can still define a function on
the quotient taking a section (a right inverse) of the projection. This amounts
to choosing an element for every equivalence classes using an auxiliary function
s : C → A such that p ◦ s = IdC , and setting f([a]) = f(s(a)). Here we need to
remark two points:

• such a function s always exists in Set: it is one of the (many) formulations
of the Axiom of Choice.

• assuming that this function exists, it is injective (basic properties of func-
tions): this is why, in Set, one can identify a quotient set as a subset. The
identification is, as we saw, not canonical: a priori there’s no particular
reason to prefer one representative or the other for the same equivalence
class.

Now, what could go wrong? In VectK, the category of K-vector spaces with
K-linear maps, everything still works fine. The reason is that every vector space
admits a K-basis (again, this is equivalent to the Axiom of Choice), so that
we can always define a section s (just choose a preimage for every element of
the basis in the quotient vector space, and extend linearly). The fact that the
operation is not canonical however remains. So, in a way, quotienting a vector
space still determines a vector subspace, which is moreover a complement to
the one we quotient on: if V is the ambient space, W a subspace, V/W the
quotient, then

V ∼= W ⊕ V/W

To better see the difference between the two notions, we now look at one
example where things do not go as we’d like them to, i.e. where we cannot inject
a quotient into another object as a subobject. Consider Ring the category of
(unital) rings, with ring homomorphisms (they respect addition and multiplica-
tion, map 0 to 0 and 1 to 1). As a particular example we take Q[X], the ring of
polynomial rings in one variable over Q. Let P,Q be two non-zero polynomials,
and quotient Q[X] by the ideal1 generated by the product PQ:

R = Q[X]/(Q[X]PQ)

1To have the quotient inherit a ring structure, we need to quotient by an ideal and not a
subring. This does not make any difference.
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The ring R is not a subring of Q[X]. Let us assume the contrary: there is an
injective morphism of rings ϕ : R → Q[X]. Then ϕ(0) = 0 and if [a], [b] ∈ R,
then ϕ([a] · [b]) = ϕ([a])ϕ([b]). But then 0 = ϕ([P ] · [Q]) = ϕ([P ])ϕ([Q]) 6= 0: in
fact ϕ([P ]), ϕ([Q]) 6= 0 by injectivity since [P ], [Q] 6= 0, and Q[X] is an integral
domain. In particular, there’s no possible section of the quotient projection
p : Q[X] → R which is a morphism of rings. The important point here is
that one can always choose a preimage for every equivalence class, but that it
might be impossible to do it consistently with the structure we are considering
on the set.
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